This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of G (see om2uz0i ) at a successor. (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| Assertion | om2uzsuci | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ suc 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | suceq | ⊢ ( 𝑧 = 𝐴 → suc 𝑧 = suc 𝐴 ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑧 = 𝐴 → ( 𝐺 ‘ suc 𝑧 ) = ( 𝐺 ‘ suc 𝐴 ) ) |
| 5 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐴 ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝐺 ‘ 𝑧 ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + 1 ) ) |
| 7 | 4 6 | eqeq12d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ↔ ( 𝐺 ‘ suc 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) + 1 ) ) ) |
| 8 | ovex | ⊢ ( ( 𝐺 ‘ 𝑧 ) + 1 ) ∈ V | |
| 9 | oveq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 + 1 ) = ( 𝑥 + 1 ) ) | |
| 10 | oveq1 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑦 + 1 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) | |
| 11 | 2 9 10 | frsucmpt2 | ⊢ ( ( 𝑧 ∈ ω ∧ ( ( 𝐺 ‘ 𝑧 ) + 1 ) ∈ V ) → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 12 | 8 11 | mpan2 | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 13 | 7 12 | vtoclga | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ suc 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) + 1 ) ) |