This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltweuz | ⊢ < We ( ℤ≥ ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom | ⊢ Ord ω | |
| 2 | ordwe | ⊢ ( Ord ω → E We ω ) | |
| 3 | 1 2 | ax-mp | ⊢ E We ω |
| 4 | rdgeq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) = rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ) | |
| 5 | 4 | reseq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) ) |
| 6 | isoeq1 | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ) ) |
| 8 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) → ( ℤ≥ ‘ 𝐴 ) = ( ℤ≥ ‘ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ) | |
| 9 | isoeq5 | ⊢ ( ( ℤ≥ ‘ 𝐴 ) = ( ℤ≥ ‘ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ) ) ) |
| 11 | 0z | ⊢ 0 ∈ ℤ | |
| 12 | 11 | elimel | ⊢ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ∈ ℤ |
| 13 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) | |
| 14 | 12 13 | om2uzisoi | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ) |
| 15 | 7 10 14 | dedth2v | ⊢ ( 𝐴 ∈ ℤ → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ) |
| 16 | isocnv | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) → ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom < , E ( ( ℤ≥ ‘ 𝐴 ) , ω ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐴 ∈ ℤ → ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom < , E ( ( ℤ≥ ‘ 𝐴 ) , ω ) ) |
| 18 | dmres | ⊢ dom ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) = ( ω ∩ dom rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ) | |
| 19 | omex | ⊢ ω ∈ V | |
| 20 | 19 | inex1 | ⊢ ( ω ∩ dom rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ) ∈ V |
| 21 | 18 20 | eqeltri | ⊢ dom ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) ∈ V |
| 22 | cnvimass | ⊢ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) “ 𝑦 ) ⊆ dom ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) | |
| 23 | 21 22 | ssexi | ⊢ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) “ 𝑦 ) ∈ V |
| 24 | 23 | ax-gen | ⊢ ∀ 𝑦 ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) “ 𝑦 ) ∈ V |
| 25 | isowe2 | ⊢ ( ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom < , E ( ( ℤ≥ ‘ 𝐴 ) , ω ) ∧ ∀ 𝑦 ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) “ 𝑦 ) ∈ V ) → ( E We ω → < We ( ℤ≥ ‘ 𝐴 ) ) ) | |
| 26 | 17 24 25 | sylancl | ⊢ ( 𝐴 ∈ ℤ → ( E We ω → < We ( ℤ≥ ‘ 𝐴 ) ) ) |
| 27 | 3 26 | mpi | ⊢ ( 𝐴 ∈ ℤ → < We ( ℤ≥ ‘ 𝐴 ) ) |
| 28 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 29 | 28 | fdmi | ⊢ dom ℤ≥ = ℤ |
| 30 | 27 29 | eleq2s | ⊢ ( 𝐴 ∈ dom ℤ≥ → < We ( ℤ≥ ‘ 𝐴 ) ) |
| 31 | we0 | ⊢ < We ∅ | |
| 32 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝐴 ) = ∅ ) | |
| 33 | weeq2 | ⊢ ( ( ℤ≥ ‘ 𝐴 ) = ∅ → ( < We ( ℤ≥ ‘ 𝐴 ) ↔ < We ∅ ) ) | |
| 34 | 32 33 | syl | ⊢ ( ¬ 𝐴 ∈ dom ℤ≥ → ( < We ( ℤ≥ ‘ 𝐴 ) ↔ < We ∅ ) ) |
| 35 | 31 34 | mpbiri | ⊢ ( ¬ 𝐴 ∈ dom ℤ≥ → < We ( ℤ≥ ‘ 𝐴 ) ) |
| 36 | 30 35 | pm2.61i | ⊢ < We ( ℤ≥ ‘ 𝐴 ) |