This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| Assertion | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∈ ( 𝑁 ‘ 𝑃 ) ↔ ∃ 𝑤 ∈ 𝑈 𝐴 = ( 𝑤 “ { 𝑃 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| 2 | simpl | ⊢ ( ( 𝑝 = 𝑞 ∧ 𝑣 ∈ 𝑈 ) → 𝑝 = 𝑞 ) | |
| 3 | 2 | sneqd | ⊢ ( ( 𝑝 = 𝑞 ∧ 𝑣 ∈ 𝑈 ) → { 𝑝 } = { 𝑞 } ) |
| 4 | 3 | imaeq2d | ⊢ ( ( 𝑝 = 𝑞 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 “ { 𝑝 } ) = ( 𝑣 “ { 𝑞 } ) ) |
| 5 | 4 | mpteq2dva | ⊢ ( 𝑝 = 𝑞 → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) |
| 6 | 5 | rneqd | ⊢ ( 𝑝 = 𝑞 → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) |
| 7 | 6 | cbvmptv | ⊢ ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) = ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) |
| 8 | 1 7 | eqtri | ⊢ 𝑁 = ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) |
| 9 | simpr2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑞 = 𝑃 ∧ 𝑣 ∈ 𝑈 ) ) → 𝑞 = 𝑃 ) | |
| 10 | 9 | sneqd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑞 = 𝑃 ∧ 𝑣 ∈ 𝑈 ) ) → { 𝑞 } = { 𝑃 } ) |
| 11 | 10 | imaeq2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑞 = 𝑃 ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑣 “ { 𝑞 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 12 | 11 | 3anassrs | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑞 = 𝑃 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 “ { 𝑞 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 13 | 12 | mpteq2dva | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑞 = 𝑃 ) → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 14 | 13 | rneqd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑞 = 𝑃 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 15 | simpr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) | |
| 16 | mptexg | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) | |
| 17 | rnexg | ⊢ ( ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) | |
| 18 | 16 17 | syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 20 | 8 14 15 19 | fvmptd2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑃 ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 21 | 20 | eleq2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐴 ∈ ( 𝑁 ‘ 𝑃 ) ↔ 𝐴 ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) ) |
| 22 | imaeq1 | ⊢ ( 𝑣 = 𝑤 → ( 𝑣 “ { 𝑃 } ) = ( 𝑤 “ { 𝑃 } ) ) | |
| 23 | 22 | cbvmptv | ⊢ ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) = ( 𝑤 ∈ 𝑈 ↦ ( 𝑤 “ { 𝑃 } ) ) |
| 24 | 23 | elrnmpt | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ↔ ∃ 𝑤 ∈ 𝑈 𝐴 = ( 𝑤 “ { 𝑃 } ) ) ) |
| 25 | 21 24 | sylan9bb | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∈ ( 𝑁 ‘ 𝑃 ) ↔ ∃ 𝑤 ∈ 𝑈 𝐴 = ( 𝑤 “ { 𝑃 } ) ) ) |