This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology induced by a uniform structure U . (Contributed by Thierry Arnoux, 30-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | utopval | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-utop | ⊢ unifTop = ( 𝑢 ∈ ∪ ran UnifOn ↦ { 𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) | |
| 2 | simpr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝑢 = 𝑈 ) | |
| 3 | 2 | unieqd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ∪ 𝑢 = ∪ 𝑈 ) |
| 4 | 3 | dmeqd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → dom ∪ 𝑢 = dom ∪ 𝑈 ) |
| 5 | ustbas2 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom ∪ 𝑈 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝑋 = dom ∪ 𝑈 ) |
| 7 | 4 6 | eqtr4d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → dom ∪ 𝑢 = 𝑋 ) |
| 8 | 7 | pweqd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝒫 dom ∪ 𝑢 = 𝒫 𝑋 ) |
| 9 | 2 | rexeqdv | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ( ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) |
| 10 | 9 | ralbidv | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ( ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ↔ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 ) ) |
| 11 | 8 10 | rabeqbidv | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → { 𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑢 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |
| 12 | elfvunirn | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ ∪ ran UnifOn ) | |
| 13 | elfvex | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 14 | pwexg | ⊢ ( 𝑋 ∈ V → 𝒫 𝑋 ∈ V ) | |
| 15 | rabexg | ⊢ ( 𝒫 𝑋 ∈ V → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ∈ V ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ∈ V ) |
| 17 | 1 11 12 16 | fvmptd2 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) |