This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighborhoods of a point P for the topology induced by an uniform space U . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | utoptop.1 | |- J = ( unifTop ` U ) |
|
| utopsnneip.1 | |- K = { a e. ~P X | A. p e. a a e. ( N ` p ) } |
||
| utopsnneip.2 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
||
| Assertion | utopsnneiplem | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` J ) ` { P } ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | |- J = ( unifTop ` U ) |
|
| 2 | utopsnneip.1 | |- K = { a e. ~P X | A. p e. a a e. ( N ` p ) } |
|
| 3 | utopsnneip.2 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| 4 | utopval | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = { a e. ~P X | A. p e. a E. w e. U ( w " { p } ) C_ a } ) |
|
| 5 | 1 4 | eqtrid | |- ( U e. ( UnifOn ` X ) -> J = { a e. ~P X | A. p e. a E. w e. U ( w " { p } ) C_ a } ) |
| 6 | simpll | |- ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) -> U e. ( UnifOn ` X ) ) |
|
| 7 | simpr | |- ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) -> a e. ~P X ) |
|
| 8 | 7 | elpwid | |- ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) -> a C_ X ) |
| 9 | 8 | sselda | |- ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) -> p e. X ) |
| 10 | simpr | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> p e. X ) |
|
| 11 | mptexg | |- ( U e. ( UnifOn ` X ) -> ( v e. U |-> ( v " { p } ) ) e. _V ) |
|
| 12 | rnexg | |- ( ( v e. U |-> ( v " { p } ) ) e. _V -> ran ( v e. U |-> ( v " { p } ) ) e. _V ) |
|
| 13 | 11 12 | syl | |- ( U e. ( UnifOn ` X ) -> ran ( v e. U |-> ( v " { p } ) ) e. _V ) |
| 14 | 13 | adantr | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ran ( v e. U |-> ( v " { p } ) ) e. _V ) |
| 15 | 3 | fvmpt2 | |- ( ( p e. X /\ ran ( v e. U |-> ( v " { p } ) ) e. _V ) -> ( N ` p ) = ran ( v e. U |-> ( v " { p } ) ) ) |
| 16 | 10 14 15 | syl2anc | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( N ` p ) = ran ( v e. U |-> ( v " { p } ) ) ) |
| 17 | 16 | eleq2d | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( a e. ( N ` p ) <-> a e. ran ( v e. U |-> ( v " { p } ) ) ) ) |
| 18 | eqid | |- ( v e. U |-> ( v " { p } ) ) = ( v e. U |-> ( v " { p } ) ) |
|
| 19 | 18 | elrnmpt | |- ( a e. _V -> ( a e. ran ( v e. U |-> ( v " { p } ) ) <-> E. v e. U a = ( v " { p } ) ) ) |
| 20 | 19 | elv | |- ( a e. ran ( v e. U |-> ( v " { p } ) ) <-> E. v e. U a = ( v " { p } ) ) |
| 21 | 17 20 | bitrdi | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( a e. ( N ` p ) <-> E. v e. U a = ( v " { p } ) ) ) |
| 22 | 6 9 21 | syl2anc | |- ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) -> ( a e. ( N ` p ) <-> E. v e. U a = ( v " { p } ) ) ) |
| 23 | nfv | |- F/ v ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) |
|
| 24 | nfre1 | |- F/ v E. v e. U a = ( v " { p } ) |
|
| 25 | 23 24 | nfan | |- F/ v ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) |
| 26 | simplr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) /\ v e. U ) /\ a = ( v " { p } ) ) -> v e. U ) |
|
| 27 | eqimss2 | |- ( a = ( v " { p } ) -> ( v " { p } ) C_ a ) |
|
| 28 | 27 | adantl | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) /\ v e. U ) /\ a = ( v " { p } ) ) -> ( v " { p } ) C_ a ) |
| 29 | imaeq1 | |- ( w = v -> ( w " { p } ) = ( v " { p } ) ) |
|
| 30 | 29 | sseq1d | |- ( w = v -> ( ( w " { p } ) C_ a <-> ( v " { p } ) C_ a ) ) |
| 31 | 30 | rspcev | |- ( ( v e. U /\ ( v " { p } ) C_ a ) -> E. w e. U ( w " { p } ) C_ a ) |
| 32 | 26 28 31 | syl2anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) /\ v e. U ) /\ a = ( v " { p } ) ) -> E. w e. U ( w " { p } ) C_ a ) |
| 33 | simpr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) -> E. v e. U a = ( v " { p } ) ) |
|
| 34 | 25 32 33 | r19.29af | |- ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. v e. U a = ( v " { p } ) ) -> E. w e. U ( w " { p } ) C_ a ) |
| 35 | 6 | ad2antrr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> U e. ( UnifOn ` X ) ) |
| 36 | 9 | ad2antrr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> p e. X ) |
| 37 | 35 36 | jca | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> ( U e. ( UnifOn ` X ) /\ p e. X ) ) |
| 38 | simpr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> ( w " { p } ) C_ a ) |
|
| 39 | 8 | ad3antrrr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> a C_ X ) |
| 40 | simplr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> w e. U ) |
|
| 41 | eqid | |- ( w " { p } ) = ( w " { p } ) |
|
| 42 | imaeq1 | |- ( u = w -> ( u " { p } ) = ( w " { p } ) ) |
|
| 43 | 42 | rspceeqv | |- ( ( w e. U /\ ( w " { p } ) = ( w " { p } ) ) -> E. u e. U ( w " { p } ) = ( u " { p } ) ) |
| 44 | 41 43 | mpan2 | |- ( w e. U -> E. u e. U ( w " { p } ) = ( u " { p } ) ) |
| 45 | 44 | adantl | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ w e. U ) -> E. u e. U ( w " { p } ) = ( u " { p } ) ) |
| 46 | vex | |- w e. _V |
|
| 47 | 46 | imaex | |- ( w " { p } ) e. _V |
| 48 | 3 | ustuqtoplem | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( w " { p } ) e. _V ) -> ( ( w " { p } ) e. ( N ` p ) <-> E. u e. U ( w " { p } ) = ( u " { p } ) ) ) |
| 49 | 47 48 | mpan2 | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( ( w " { p } ) e. ( N ` p ) <-> E. u e. U ( w " { p } ) = ( u " { p } ) ) ) |
| 50 | 49 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ w e. U ) -> ( ( w " { p } ) e. ( N ` p ) <-> E. u e. U ( w " { p } ) = ( u " { p } ) ) ) |
| 51 | 45 50 | mpbird | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ w e. U ) -> ( w " { p } ) e. ( N ` p ) ) |
| 52 | 35 36 40 51 | syl21anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> ( w " { p } ) e. ( N ` p ) ) |
| 53 | sseq1 | |- ( b = ( w " { p } ) -> ( b C_ a <-> ( w " { p } ) C_ a ) ) |
|
| 54 | 53 | 3anbi2d | |- ( b = ( w " { p } ) -> ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b C_ a /\ a C_ X ) <-> ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( w " { p } ) C_ a /\ a C_ X ) ) ) |
| 55 | eleq1 | |- ( b = ( w " { p } ) -> ( b e. ( N ` p ) <-> ( w " { p } ) e. ( N ` p ) ) ) |
|
| 56 | 54 55 | anbi12d | |- ( b = ( w " { p } ) -> ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b C_ a /\ a C_ X ) /\ b e. ( N ` p ) ) <-> ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( w " { p } ) C_ a /\ a C_ X ) /\ ( w " { p } ) e. ( N ` p ) ) ) ) |
| 57 | 56 | imbi1d | |- ( b = ( w " { p } ) -> ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b C_ a /\ a C_ X ) /\ b e. ( N ` p ) ) -> a e. ( N ` p ) ) <-> ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( w " { p } ) C_ a /\ a C_ X ) /\ ( w " { p } ) e. ( N ` p ) ) -> a e. ( N ` p ) ) ) ) |
| 58 | 3 | ustuqtop1 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b C_ a /\ a C_ X ) /\ b e. ( N ` p ) ) -> a e. ( N ` p ) ) |
| 59 | 47 57 58 | vtocl | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( w " { p } ) C_ a /\ a C_ X ) /\ ( w " { p } ) e. ( N ` p ) ) -> a e. ( N ` p ) ) |
| 60 | 37 38 39 52 59 | syl31anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> a e. ( N ` p ) ) |
| 61 | 37 21 | syl | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> ( a e. ( N ` p ) <-> E. v e. U a = ( v " { p } ) ) ) |
| 62 | 60 61 | mpbid | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ w e. U ) /\ ( w " { p } ) C_ a ) -> E. v e. U a = ( v " { p } ) ) |
| 63 | 62 | r19.29an | |- ( ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) /\ E. w e. U ( w " { p } ) C_ a ) -> E. v e. U a = ( v " { p } ) ) |
| 64 | 34 63 | impbida | |- ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) -> ( E. v e. U a = ( v " { p } ) <-> E. w e. U ( w " { p } ) C_ a ) ) |
| 65 | 22 64 | bitrd | |- ( ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) /\ p e. a ) -> ( a e. ( N ` p ) <-> E. w e. U ( w " { p } ) C_ a ) ) |
| 66 | 65 | ralbidva | |- ( ( U e. ( UnifOn ` X ) /\ a e. ~P X ) -> ( A. p e. a a e. ( N ` p ) <-> A. p e. a E. w e. U ( w " { p } ) C_ a ) ) |
| 67 | 66 | rabbidva | |- ( U e. ( UnifOn ` X ) -> { a e. ~P X | A. p e. a a e. ( N ` p ) } = { a e. ~P X | A. p e. a E. w e. U ( w " { p } ) C_ a } ) |
| 68 | 5 67 | eqtr4d | |- ( U e. ( UnifOn ` X ) -> J = { a e. ~P X | A. p e. a a e. ( N ` p ) } ) |
| 69 | 68 2 | eqtr4di | |- ( U e. ( UnifOn ` X ) -> J = K ) |
| 70 | 69 | fveq2d | |- ( U e. ( UnifOn ` X ) -> ( nei ` J ) = ( nei ` K ) ) |
| 71 | 70 | fveq1d | |- ( U e. ( UnifOn ` X ) -> ( ( nei ` J ) ` { P } ) = ( ( nei ` K ) ` { P } ) ) |
| 72 | 71 | adantr | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` J ) ` { P } ) = ( ( nei ` K ) ` { P } ) ) |
| 73 | 3 | ustuqtop0 | |- ( U e. ( UnifOn ` X ) -> N : X --> ~P ~P X ) |
| 74 | 3 | ustuqtop1 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> b e. ( N ` p ) ) |
| 75 | 3 | ustuqtop2 | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( fi ` ( N ` p ) ) C_ ( N ` p ) ) |
| 76 | 3 | ustuqtop3 | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> p e. a ) |
| 77 | 3 | ustuqtop4 | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> E. b e. ( N ` p ) A. q e. b a e. ( N ` q ) ) |
| 78 | 3 | ustuqtop5 | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> X e. ( N ` p ) ) |
| 79 | 2 73 74 75 76 77 78 | neiptopnei | |- ( U e. ( UnifOn ` X ) -> N = ( p e. X |-> ( ( nei ` K ) ` { p } ) ) ) |
| 80 | 79 | adantr | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> N = ( p e. X |-> ( ( nei ` K ) ` { p } ) ) ) |
| 81 | simpr | |- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ p = P ) -> p = P ) |
|
| 82 | 81 | sneqd | |- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ p = P ) -> { p } = { P } ) |
| 83 | 82 | fveq2d | |- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ p = P ) -> ( ( nei ` K ) ` { p } ) = ( ( nei ` K ) ` { P } ) ) |
| 84 | simpr | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> P e. X ) |
|
| 85 | fvexd | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` K ) ` { P } ) e. _V ) |
|
| 86 | 80 83 84 85 | fvmptd | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( N ` P ) = ( ( nei ` K ) ` { P } ) ) |
| 87 | mptexg | |- ( U e. ( UnifOn ` X ) -> ( v e. U |-> ( v " { P } ) ) e. _V ) |
|
| 88 | rnexg | |- ( ( v e. U |-> ( v " { P } ) ) e. _V -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
|
| 89 | 87 88 | syl | |- ( U e. ( UnifOn ` X ) -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 90 | 89 | adantr | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 91 | nfv | |- F/ v P e. X |
|
| 92 | nfmpt1 | |- F/_ v ( v e. U |-> ( v " { P } ) ) |
|
| 93 | 92 | nfrn | |- F/_ v ran ( v e. U |-> ( v " { P } ) ) |
| 94 | 93 | nfel1 | |- F/ v ran ( v e. U |-> ( v " { P } ) ) e. _V |
| 95 | 91 94 | nfan | |- F/ v ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 96 | nfv | |- F/ v p = P |
|
| 97 | 95 96 | nfan | |- F/ v ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) /\ p = P ) |
| 98 | simpr2 | |- ( ( P e. X /\ ( ran ( v e. U |-> ( v " { P } ) ) e. _V /\ p = P /\ v e. U ) ) -> p = P ) |
|
| 99 | 98 | sneqd | |- ( ( P e. X /\ ( ran ( v e. U |-> ( v " { P } ) ) e. _V /\ p = P /\ v e. U ) ) -> { p } = { P } ) |
| 100 | 99 | imaeq2d | |- ( ( P e. X /\ ( ran ( v e. U |-> ( v " { P } ) ) e. _V /\ p = P /\ v e. U ) ) -> ( v " { p } ) = ( v " { P } ) ) |
| 101 | 100 | 3anassrs | |- ( ( ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) /\ p = P ) /\ v e. U ) -> ( v " { p } ) = ( v " { P } ) ) |
| 102 | 97 101 | mpteq2da | |- ( ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) /\ p = P ) -> ( v e. U |-> ( v " { p } ) ) = ( v e. U |-> ( v " { P } ) ) ) |
| 103 | 102 | rneqd | |- ( ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) /\ p = P ) -> ran ( v e. U |-> ( v " { p } ) ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 104 | simpl | |- ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) -> P e. X ) |
|
| 105 | simpr | |- ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
|
| 106 | 3 103 104 105 | fvmptd2 | |- ( ( P e. X /\ ran ( v e. U |-> ( v " { P } ) ) e. _V ) -> ( N ` P ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 107 | 84 90 106 | syl2anc | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( N ` P ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 108 | 72 86 107 | 3eqtr2d | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` J ) ` { P } ) = ran ( v e. U |-> ( v " { P } ) ) ) |