This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighborhoods of a point P for the topology induced by an uniform space U . (Contributed by Thierry Arnoux, 13-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utoptop.1 | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | |
| Assertion | utopsnneip | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | |
| 2 | fveq2 | ⊢ ( 𝑟 = 𝑝 → ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑟 ) = ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝑟 = 𝑝 → ( 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑟 ) ↔ 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) ) |
| 4 | 3 | cbvralvw | ⊢ ( ∀ 𝑟 ∈ 𝑏 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑟 ) ↔ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) |
| 5 | eleq1w | ⊢ ( 𝑏 = 𝑎 → ( 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ↔ 𝑎 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) ) | |
| 6 | 5 | raleqbi1dv | ⊢ ( 𝑏 = 𝑎 → ( ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ↔ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) ) |
| 7 | 4 6 | bitrid | ⊢ ( 𝑏 = 𝑎 → ( ∀ 𝑟 ∈ 𝑏 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑟 ) ↔ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) ) ) |
| 8 | 7 | cbvrabv | ⊢ { 𝑏 ∈ 𝒫 𝑋 ∣ ∀ 𝑟 ∈ 𝑏 𝑏 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑟 ) } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) ‘ 𝑝 ) } |
| 9 | simpl | ⊢ ( ( 𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈 ) → 𝑞 = 𝑝 ) | |
| 10 | 9 | sneqd | ⊢ ( ( 𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈 ) → { 𝑞 } = { 𝑝 } ) |
| 11 | 10 | imaeq2d | ⊢ ( ( 𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 “ { 𝑞 } ) = ( 𝑣 “ { 𝑝 } ) ) |
| 12 | 11 | mpteq2dva | ⊢ ( 𝑞 = 𝑝 → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
| 13 | 12 | rneqd | ⊢ ( 𝑞 = 𝑝 → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
| 14 | 13 | cbvmptv | ⊢ ( 𝑞 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑞 } ) ) ) = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
| 15 | 1 8 14 | utopsnneiplem | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |