This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | neitx.x | ⊢ 𝑋 = ∪ 𝐽 | |
| neitx.y | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | neitx | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ( 𝐴 × 𝐵 ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐾 ) ) ‘ ( 𝐶 × 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neitx.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | neitx.y | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ) → 𝐴 ⊆ 𝑋 ) |
| 4 | 3 | ad2ant2r | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → 𝐴 ⊆ 𝑋 ) |
| 5 | 2 | neii1 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) → 𝐵 ⊆ 𝑌 ) |
| 6 | 5 | ad2ant2l | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → 𝐵 ⊆ 𝑌 ) |
| 7 | xpss12 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐴 × 𝐵 ) ⊆ ( 𝑋 × 𝑌 ) ) | |
| 8 | 4 6 7 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ( 𝐴 × 𝐵 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 9 | 1 2 | txuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝐽 ×t 𝐾 ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝐽 ×t 𝐾 ) ) |
| 11 | 8 10 | sseqtrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ( 𝐴 × 𝐵 ) ⊆ ∪ ( 𝐽 ×t 𝐾 ) ) |
| 12 | simp-5l | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ) | |
| 13 | simp-4r | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → 𝑎 ∈ 𝐽 ) | |
| 14 | simplr | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → 𝑏 ∈ 𝐾 ) | |
| 15 | txopn | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐾 ) ) → ( 𝑎 × 𝑏 ) ∈ ( 𝐽 ×t 𝐾 ) ) | |
| 16 | 12 13 14 15 | syl12anc | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → ( 𝑎 × 𝑏 ) ∈ ( 𝐽 ×t 𝐾 ) ) |
| 17 | simpr1l | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ∧ 𝑏 ∈ 𝐾 ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) ) → 𝐶 ⊆ 𝑎 ) | |
| 18 | 17 | 3anassrs | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → 𝐶 ⊆ 𝑎 ) |
| 19 | simprl | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → 𝐷 ⊆ 𝑏 ) | |
| 20 | xpss12 | ⊢ ( ( 𝐶 ⊆ 𝑎 ∧ 𝐷 ⊆ 𝑏 ) → ( 𝐶 × 𝐷 ) ⊆ ( 𝑎 × 𝑏 ) ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → ( 𝐶 × 𝐷 ) ⊆ ( 𝑎 × 𝑏 ) ) |
| 22 | simpr1r | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ∧ 𝑏 ∈ 𝐾 ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) ) → 𝑎 ⊆ 𝐴 ) | |
| 23 | 22 | 3anassrs | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → 𝑎 ⊆ 𝐴 ) |
| 24 | simprr | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → 𝑏 ⊆ 𝐵 ) | |
| 25 | xpss12 | ⊢ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑏 ⊆ 𝐵 ) → ( 𝑎 × 𝑏 ) ⊆ ( 𝐴 × 𝐵 ) ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → ( 𝑎 × 𝑏 ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 27 | sseq2 | ⊢ ( 𝑐 = ( 𝑎 × 𝑏 ) → ( ( 𝐶 × 𝐷 ) ⊆ 𝑐 ↔ ( 𝐶 × 𝐷 ) ⊆ ( 𝑎 × 𝑏 ) ) ) | |
| 28 | sseq1 | ⊢ ( 𝑐 = ( 𝑎 × 𝑏 ) → ( 𝑐 ⊆ ( 𝐴 × 𝐵 ) ↔ ( 𝑎 × 𝑏 ) ⊆ ( 𝐴 × 𝐵 ) ) ) | |
| 29 | 27 28 | anbi12d | ⊢ ( 𝑐 = ( 𝑎 × 𝑏 ) → ( ( ( 𝐶 × 𝐷 ) ⊆ 𝑐 ∧ 𝑐 ⊆ ( 𝐴 × 𝐵 ) ) ↔ ( ( 𝐶 × 𝐷 ) ⊆ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( 𝐴 × 𝐵 ) ) ) ) |
| 30 | 29 | rspcev | ⊢ ( ( ( 𝑎 × 𝑏 ) ∈ ( 𝐽 ×t 𝐾 ) ∧ ( ( 𝐶 × 𝐷 ) ⊆ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( 𝐴 × 𝐵 ) ) ) → ∃ 𝑐 ∈ ( 𝐽 ×t 𝐾 ) ( ( 𝐶 × 𝐷 ) ⊆ 𝑐 ∧ 𝑐 ⊆ ( 𝐴 × 𝐵 ) ) ) |
| 31 | 16 21 26 30 | syl12anc | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) ∧ 𝑏 ∈ 𝐾 ) ∧ ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐽 ×t 𝐾 ) ( ( 𝐶 × 𝐷 ) ⊆ 𝑐 ∧ 𝑐 ⊆ ( 𝐴 × 𝐵 ) ) ) |
| 32 | neii2 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) → ∃ 𝑏 ∈ 𝐾 ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) | |
| 33 | 32 | ad2ant2l | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ∃ 𝑏 ∈ 𝐾 ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐾 ( 𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵 ) ) |
| 35 | 31 34 | r19.29a | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) ∧ 𝑎 ∈ 𝐽 ) ∧ ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) → ∃ 𝑐 ∈ ( 𝐽 ×t 𝐾 ) ( ( 𝐶 × 𝐷 ) ⊆ 𝑐 ∧ 𝑐 ⊆ ( 𝐴 × 𝐵 ) ) ) |
| 36 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ) → ∃ 𝑎 ∈ 𝐽 ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) | |
| 37 | 36 | ad2ant2r | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ∃ 𝑎 ∈ 𝐽 ( 𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴 ) ) |
| 38 | 35 37 | r19.29a | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ∃ 𝑐 ∈ ( 𝐽 ×t 𝐾 ) ( ( 𝐶 × 𝐷 ) ⊆ 𝑐 ∧ 𝑐 ⊆ ( 𝐴 × 𝐵 ) ) ) |
| 39 | txtop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 ×t 𝐾 ) ∈ Top ) | |
| 40 | 39 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ( 𝐽 ×t 𝐾 ) ∈ Top ) |
| 41 | 1 | neiss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ) → 𝐶 ⊆ 𝑋 ) |
| 42 | 41 | ad2ant2r | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → 𝐶 ⊆ 𝑋 ) |
| 43 | 2 | neiss2 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) → 𝐷 ⊆ 𝑌 ) |
| 44 | 43 | ad2ant2l | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → 𝐷 ⊆ 𝑌 ) |
| 45 | xpss12 | ⊢ ( ( 𝐶 ⊆ 𝑋 ∧ 𝐷 ⊆ 𝑌 ) → ( 𝐶 × 𝐷 ) ⊆ ( 𝑋 × 𝑌 ) ) | |
| 46 | 42 44 45 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ( 𝐶 × 𝐷 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 47 | 46 10 | sseqtrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ( 𝐶 × 𝐷 ) ⊆ ∪ ( 𝐽 ×t 𝐾 ) ) |
| 48 | eqid | ⊢ ∪ ( 𝐽 ×t 𝐾 ) = ∪ ( 𝐽 ×t 𝐾 ) | |
| 49 | 48 | isnei | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ Top ∧ ( 𝐶 × 𝐷 ) ⊆ ∪ ( 𝐽 ×t 𝐾 ) ) → ( ( 𝐴 × 𝐵 ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐾 ) ) ‘ ( 𝐶 × 𝐷 ) ) ↔ ( ( 𝐴 × 𝐵 ) ⊆ ∪ ( 𝐽 ×t 𝐾 ) ∧ ∃ 𝑐 ∈ ( 𝐽 ×t 𝐾 ) ( ( 𝐶 × 𝐷 ) ⊆ 𝑐 ∧ 𝑐 ⊆ ( 𝐴 × 𝐵 ) ) ) ) ) |
| 50 | 40 47 49 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ( ( 𝐴 × 𝐵 ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐾 ) ) ‘ ( 𝐶 × 𝐷 ) ) ↔ ( ( 𝐴 × 𝐵 ) ⊆ ∪ ( 𝐽 ×t 𝐾 ) ∧ ∃ 𝑐 ∈ ( 𝐽 ×t 𝐾 ) ( ( 𝐶 × 𝐷 ) ⊆ 𝑐 ∧ 𝑐 ⊆ ( 𝐴 × 𝐵 ) ) ) ) ) |
| 51 | 11 38 50 | mpbir2and | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐴 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐶 ) ∧ 𝐵 ∈ ( ( nei ‘ 𝐾 ) ‘ 𝐷 ) ) ) → ( 𝐴 × 𝐵 ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐾 ) ) ‘ ( 𝐶 × 𝐷 ) ) ) |