This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Images of singletons by entourages V are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utoptop.1 | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | |
| Assertion | utopsnnei | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑉 “ { 𝑃 } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | |
| 2 | eqid | ⊢ ( 𝑉 “ { 𝑃 } ) = ( 𝑉 “ { 𝑃 } ) | |
| 3 | imaeq1 | ⊢ ( 𝑣 = 𝑉 → ( 𝑣 “ { 𝑃 } ) = ( 𝑉 “ { 𝑃 } ) ) | |
| 4 | 3 | rspceeqv | ⊢ ( ( 𝑉 ∈ 𝑈 ∧ ( 𝑉 “ { 𝑃 } ) = ( 𝑉 “ { 𝑃 } ) ) → ∃ 𝑣 ∈ 𝑈 ( 𝑉 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 5 | 2 4 | mpan2 | ⊢ ( 𝑉 ∈ 𝑈 → ∃ 𝑣 ∈ 𝑈 ( 𝑉 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑉 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 7 | 1 | utopsnneip | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 9 | 8 | eleq2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑉 “ { 𝑃 } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑉 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) ) |
| 10 | imaexg | ⊢ ( 𝑉 ∈ 𝑈 → ( 𝑉 “ { 𝑃 } ) ∈ V ) | |
| 11 | eqid | ⊢ ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) | |
| 12 | 11 | elrnmpt | ⊢ ( ( 𝑉 “ { 𝑃 } ) ∈ V → ( ( 𝑉 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑉 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝑉 ∈ 𝑈 → ( ( 𝑉 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑉 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) ) |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑉 “ { 𝑃 } ) ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑉 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) ) |
| 15 | 9 14 | bitrd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑉 “ { 𝑃 } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑉 “ { 𝑃 } ) = ( 𝑣 “ { 𝑃 } ) ) ) |
| 16 | 6 15 | mpbird | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑉 “ { 𝑃 } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) |