This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcogw | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍 ) ∧ ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) ) → 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) | |
| 2 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 𝐷 𝑥 ↔ 𝐴 𝐷 𝑋 ) ) | |
| 3 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐶 𝐵 ↔ 𝑋 𝐶 𝐵 ) ) | |
| 4 | 2 3 | anbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ↔ ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) ) ) |
| 5 | 4 | spcegv | ⊢ ( 𝑋 ∈ 𝑍 → ( ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) → ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝑋 ∈ 𝑍 ∧ ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) ) → ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |
| 7 | 6 | 3ad2antl3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍 ) ∧ ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) ) → ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |
| 8 | brcog | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) ) | |
| 9 | 8 | biimpar | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) → 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ) |
| 10 | 1 7 9 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍 ) ∧ ( 𝐴 𝐷 𝑋 ∧ 𝑋 𝐶 𝐵 ) ) → 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ) |