This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology induced by a uniform structure U is a topology. (Contributed by Thierry Arnoux, 30-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | utoptop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) → 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) | |
| 2 | utopval | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑎 } ) | |
| 3 | ssrab2 | ⊢ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑎 } ⊆ 𝒫 𝑋 | |
| 4 | 2 3 | eqsstrdi | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ⊆ 𝒫 𝑋 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) → ( unifTop ‘ 𝑈 ) ⊆ 𝒫 𝑋 ) |
| 6 | 1 5 | sstrd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) → 𝑥 ⊆ 𝒫 𝑋 ) |
| 7 | sspwuni | ⊢ ( 𝑥 ⊆ 𝒫 𝑋 ↔ ∪ 𝑥 ⊆ 𝑋 ) | |
| 8 | 6 7 | sylib | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) → ∪ 𝑥 ⊆ 𝑋 ) |
| 9 | simp-4l | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ∪ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑝 ∈ 𝑦 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 10 | simp-4r | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ∪ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑝 ∈ 𝑦 ) → 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) | |
| 11 | simplr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ∪ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑝 ∈ 𝑦 ) → 𝑦 ∈ 𝑥 ) | |
| 12 | 10 11 | sseldd | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ∪ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑝 ∈ 𝑦 ) → 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) |
| 13 | simpr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ∪ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑝 ∈ 𝑦 ) → 𝑝 ∈ 𝑦 ) | |
| 14 | elutop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑦 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑦 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) | |
| 15 | 14 | biimpa | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) → ( 𝑦 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑦 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) |
| 16 | 15 | simprd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) → ∀ 𝑝 ∈ 𝑦 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) |
| 17 | 16 | r19.21bi | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ 𝑦 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) |
| 18 | 9 12 13 17 | syl21anc | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ∪ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑝 ∈ 𝑦 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) |
| 19 | r19.41v | ⊢ ( ∃ 𝑣 ∈ 𝑈 ( ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ↔ ( ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ∧ 𝑦 ∈ 𝑥 ) ) | |
| 20 | ssuni | ⊢ ( ( ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → ( 𝑣 “ { 𝑝 } ) ⊆ ∪ 𝑥 ) | |
| 21 | 20 | reximi | ⊢ ( ∃ 𝑣 ∈ 𝑈 ( ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ ∪ 𝑥 ) |
| 22 | 19 21 | sylbir | ⊢ ( ( ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ ∪ 𝑥 ) |
| 23 | 18 11 22 | syl2anc | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ∪ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑝 ∈ 𝑦 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ ∪ 𝑥 ) |
| 24 | eluni2 | ⊢ ( 𝑝 ∈ ∪ 𝑥 ↔ ∃ 𝑦 ∈ 𝑥 𝑝 ∈ 𝑦 ) | |
| 25 | 24 | biimpi | ⊢ ( 𝑝 ∈ ∪ 𝑥 → ∃ 𝑦 ∈ 𝑥 𝑝 ∈ 𝑦 ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ∪ 𝑥 ) → ∃ 𝑦 ∈ 𝑥 𝑝 ∈ 𝑦 ) |
| 27 | 23 26 | r19.29a | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ∪ 𝑥 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ ∪ 𝑥 ) |
| 28 | 27 | ralrimiva | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) → ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ ∪ 𝑥 ) |
| 29 | elutop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ∪ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ↔ ( ∪ 𝑥 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ ∪ 𝑥 ) ) ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) → ( ∪ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ↔ ( ∪ 𝑥 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ ∪ 𝑥 ) ) ) |
| 31 | 8 28 30 | mpbir2and | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ⊆ ( unifTop ‘ 𝑈 ) ) → ∪ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ) |
| 32 | 31 | ex | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑥 ⊆ ( unifTop ‘ 𝑈 ) → ∪ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ) ) |
| 33 | 32 | alrimiv | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑥 ( 𝑥 ⊆ ( unifTop ‘ 𝑈 ) → ∪ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ) ) |
| 34 | elutop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑥 ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ) ) ) | |
| 35 | 34 | biimpa | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ) → ( 𝑥 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑥 ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ) ) |
| 36 | 35 | simpld | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ) → 𝑥 ⊆ 𝑋 ) |
| 37 | 36 | adantrr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) → 𝑥 ⊆ 𝑋 ) |
| 38 | ssinss1 | ⊢ ( 𝑥 ⊆ 𝑋 → ( 𝑥 ∩ 𝑦 ) ⊆ 𝑋 ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) → ( 𝑥 ∩ 𝑦 ) ⊆ 𝑋 ) |
| 40 | simpl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 41 | simpr31 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → 𝑢 ∈ 𝑈 ) | |
| 42 | simpr32 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → 𝑣 ∈ 𝑈 ) | |
| 43 | ustincl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝑈 ) | |
| 44 | 40 41 42 43 | syl3anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝑈 ) |
| 45 | inss1 | ⊢ ( 𝑢 ∩ 𝑣 ) ⊆ 𝑢 | |
| 46 | imass1 | ⊢ ( ( 𝑢 ∩ 𝑣 ) ⊆ 𝑢 → ( ( 𝑢 ∩ 𝑣 ) “ { 𝑝 } ) ⊆ ( 𝑢 “ { 𝑝 } ) ) | |
| 47 | 45 46 | ax-mp | ⊢ ( ( 𝑢 ∩ 𝑣 ) “ { 𝑝 } ) ⊆ ( 𝑢 “ { 𝑝 } ) |
| 48 | simpr33 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) | |
| 49 | 48 | simpld | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ) |
| 50 | 47 49 | sstrid | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → ( ( 𝑢 ∩ 𝑣 ) “ { 𝑝 } ) ⊆ 𝑥 ) |
| 51 | inss2 | ⊢ ( 𝑢 ∩ 𝑣 ) ⊆ 𝑣 | |
| 52 | imass1 | ⊢ ( ( 𝑢 ∩ 𝑣 ) ⊆ 𝑣 → ( ( 𝑢 ∩ 𝑣 ) “ { 𝑝 } ) ⊆ ( 𝑣 “ { 𝑝 } ) ) | |
| 53 | 51 52 | ax-mp | ⊢ ( ( 𝑢 ∩ 𝑣 ) “ { 𝑝 } ) ⊆ ( 𝑣 “ { 𝑝 } ) |
| 54 | 48 | simprd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) |
| 55 | 53 54 | sstrid | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → ( ( 𝑢 ∩ 𝑣 ) “ { 𝑝 } ) ⊆ 𝑦 ) |
| 56 | 50 55 | ssind | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → ( ( 𝑢 ∩ 𝑣 ) “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 57 | imaeq1 | ⊢ ( 𝑤 = ( 𝑢 ∩ 𝑣 ) → ( 𝑤 “ { 𝑝 } ) = ( ( 𝑢 ∩ 𝑣 ) “ { 𝑝 } ) ) | |
| 58 | 57 | sseq1d | ⊢ ( 𝑤 = ( 𝑢 ∩ 𝑣 ) → ( ( 𝑤 “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ( ( 𝑢 ∩ 𝑣 ) “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 59 | 58 | rspcev | ⊢ ( ( ( 𝑢 ∩ 𝑣 ) ∈ 𝑈 ∧ ( ( 𝑢 ∩ 𝑣 ) “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 60 | 44 56 59 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 61 | 60 | 3anassrs | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑢 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 62 | 61 | 3anassrs | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 63 | simpll | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 64 | simplrl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑥 ∈ ( unifTop ‘ 𝑈 ) ) | |
| 65 | simpr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) | |
| 66 | elin | ⊢ ( 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑝 ∈ 𝑥 ∧ 𝑝 ∈ 𝑦 ) ) | |
| 67 | 65 66 | sylib | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( 𝑝 ∈ 𝑥 ∧ 𝑝 ∈ 𝑦 ) ) |
| 68 | 67 | simpld | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑝 ∈ 𝑥 ) |
| 69 | 35 | simprd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ) → ∀ 𝑝 ∈ 𝑥 ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ) |
| 70 | 69 | r19.21bi | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑝 ∈ 𝑥 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ) |
| 71 | 63 64 68 70 | syl21anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ) |
| 72 | simplrr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) | |
| 73 | 67 | simprd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑝 ∈ 𝑦 ) |
| 74 | 63 72 73 17 | syl21anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) |
| 75 | reeanv | ⊢ ( ∃ 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑈 ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ↔ ( ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) | |
| 76 | 71 74 75 | sylanbrc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑈 ∃ 𝑣 ∈ 𝑈 ( ( 𝑢 “ { 𝑝 } ) ⊆ 𝑥 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑦 ) ) |
| 77 | 62 76 | r19.29vva | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) ∧ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 78 | 77 | ralrimiva | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) → ∀ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 79 | elutop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( 𝑥 ∩ 𝑦 ) ∈ ( unifTop ‘ 𝑈 ) ↔ ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝑋 ∧ ∀ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 80 | 79 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) → ( ( 𝑥 ∩ 𝑦 ) ∈ ( unifTop ‘ 𝑈 ) ↔ ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝑋 ∧ ∀ 𝑝 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 81 | 39 78 80 | mpbir2and | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∧ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( unifTop ‘ 𝑈 ) ) |
| 82 | 81 | ralrimivva | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∀ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ( 𝑥 ∩ 𝑦 ) ∈ ( unifTop ‘ 𝑈 ) ) |
| 83 | fvex | ⊢ ( unifTop ‘ 𝑈 ) ∈ V | |
| 84 | istopg | ⊢ ( ( unifTop ‘ 𝑈 ) ∈ V → ( ( unifTop ‘ 𝑈 ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( unifTop ‘ 𝑈 ) → ∪ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ) ∧ ∀ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∀ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ( 𝑥 ∩ 𝑦 ) ∈ ( unifTop ‘ 𝑈 ) ) ) ) | |
| 85 | 83 84 | ax-mp | ⊢ ( ( unifTop ‘ 𝑈 ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( unifTop ‘ 𝑈 ) → ∪ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ) ∧ ∀ 𝑥 ∈ ( unifTop ‘ 𝑈 ) ∀ 𝑦 ∈ ( unifTop ‘ 𝑈 ) ( 𝑥 ∩ 𝑦 ) ∈ ( unifTop ‘ 𝑈 ) ) ) |
| 86 | 33 82 85 | sylanbrc | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ Top ) |