This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the topology induced by a uniform structure U . (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | utopbas | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ∪ ( unifTop ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopval | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ) | |
| 2 | ssrab2 | ⊢ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑎 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑎 } ⊆ 𝒫 𝑋 | |
| 3 | 1 2 | eqsstrdi | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ⊆ 𝒫 𝑋 ) |
| 4 | ssidd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ⊆ 𝑋 ) | |
| 5 | ustssxp | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 6 | imassrn | ⊢ ( 𝑣 “ { 𝑥 } ) ⊆ ran 𝑣 | |
| 7 | rnss | ⊢ ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) → ran 𝑣 ⊆ ran ( 𝑋 × 𝑋 ) ) | |
| 8 | rnxpid | ⊢ ran ( 𝑋 × 𝑋 ) = 𝑋 | |
| 9 | 7 8 | sseqtrdi | ⊢ ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) → ran 𝑣 ⊆ 𝑋 ) |
| 10 | 6 9 | sstrid | ⊢ ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) → ( 𝑣 “ { 𝑥 } ) ⊆ 𝑋 ) |
| 11 | 5 10 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 “ { 𝑥 } ) ⊆ 𝑋 ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑋 ) |
| 13 | ustne0 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ≠ ∅ ) | |
| 14 | r19.2zb | ⊢ ( 𝑈 ≠ ∅ ↔ ( ∀ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑋 → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑋 ) ) | |
| 15 | 13 14 | sylib | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ∀ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑋 → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑋 ) ) |
| 16 | 12 15 | mpd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑋 ) |
| 17 | 16 | ralrimivw | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑋 ) |
| 18 | elutop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝑋 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑥 } ) ⊆ 𝑋 ) ) ) | |
| 19 | 4 17 18 | mpbir2and | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ ( unifTop ‘ 𝑈 ) ) |
| 20 | elpwuni | ⊢ ( 𝑋 ∈ ( unifTop ‘ 𝑈 ) → ( ( unifTop ‘ 𝑈 ) ⊆ 𝒫 𝑋 ↔ ∪ ( unifTop ‘ 𝑈 ) = 𝑋 ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( unifTop ‘ 𝑈 ) ⊆ 𝒫 𝑋 ↔ ∪ ( unifTop ‘ 𝑈 ) = 𝑋 ) ) |
| 22 | 3 21 | mpbid | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ ( unifTop ‘ 𝑈 ) = 𝑋 ) |
| 23 | 22 | eqcomd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ∪ ( unifTop ‘ 𝑈 ) ) |