This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple pseudograph there are no circuits with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017) (Revised by AV, 3-Feb-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgrn2crct | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ 𝐹 ) ≠ 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctprop | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 2 | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) | |
| 3 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
| 4 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 6 | 4 5 | upgriswlk | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
| 7 | preq2 | ⊢ ( ( 𝑃 ‘ 2 ) = ( 𝑃 ‘ 0 ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } ) | |
| 8 | prcom | ⊢ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } | |
| 9 | 7 8 | eqtrdi | ⊢ ( ( 𝑃 ‘ 2 ) = ( 𝑃 ‘ 0 ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 10 | 9 | eqcoms | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 11 | 10 | eqeq2d | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 12 | 11 | anbi2d | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ∧ ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) ) |
| 14 | eqtr3 | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) ) | |
| 15 | 4 5 | uspgrf | ⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 16 | 15 | adantl | ⊢ ( ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 17 | 16 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 18 | 17 | adantr | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 19 | df-f1 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ Fun ◡ 𝐹 ) ) | |
| 20 | 19 | simplbi2 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → ( Fun ◡ 𝐹 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ) ) |
| 21 | wrdf | ⊢ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) | |
| 22 | 20 21 | syl11 | ⊢ ( Fun ◡ 𝐹 → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ) |
| 26 | 2nn | ⊢ 2 ∈ ℕ | |
| 27 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 2 ) ↔ 2 ∈ ℕ ) | |
| 28 | 26 27 | mpbir | ⊢ 0 ∈ ( 0 ..^ 2 ) |
| 29 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 30 | 1lt2 | ⊢ 1 < 2 | |
| 31 | elfzo0 | ⊢ ( 1 ∈ ( 0 ..^ 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2 ) ) | |
| 32 | 29 26 30 31 | mpbir3an | ⊢ 1 ∈ ( 0 ..^ 2 ) |
| 33 | 28 32 | pm3.2i | ⊢ ( 0 ∈ ( 0 ..^ 2 ) ∧ 1 ∈ ( 0 ..^ 2 ) ) |
| 34 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) ) | |
| 35 | 34 | eleq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ 0 ∈ ( 0 ..^ 2 ) ) ) |
| 36 | 34 | eleq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 1 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ 1 ∈ ( 0 ..^ 2 ) ) ) |
| 37 | 35 36 | anbi12d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 0 ∈ ( 0 ..^ 2 ) ∧ 1 ∈ ( 0 ..^ 2 ) ) ) ) |
| 38 | 33 37 | mpbiri | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 40 | f1cofveqaeq | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) → 0 = 1 ) ) | |
| 41 | 18 25 39 40 | syl21anc | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) → 0 = 1 ) ) |
| 42 | 0ne1 | ⊢ 0 ≠ 1 | |
| 43 | eqneqall | ⊢ ( 0 = 1 → ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) | |
| 44 | 41 42 43 | syl6mpi | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 45 | 44 | adantll | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ∧ ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 46 | 14 45 | syl5 | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ∧ ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 47 | 13 46 | sylbid | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ∧ ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) ) ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 48 | 47 | expimpd | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ∧ ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) ) → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 49 | 48 | ex | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 50 | 2a1 | ⊢ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) | |
| 51 | 49 50 | pm2.61ine | ⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 52 | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } | |
| 53 | 34 52 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 } ) |
| 54 | 53 | raleqdv | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 55 | 2wlklem | ⊢ ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) | |
| 56 | 54 55 | bitrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) |
| 57 | 56 | anbi2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) ) |
| 58 | fveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 2 ) ) | |
| 59 | 58 | neeq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 60 | 57 59 | imbi12d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 61 | 60 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) → ( ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 62 | 51 61 | mpbird | ⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) ) → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 63 | 62 | ex | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 64 | 63 | com13 | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( ( Fun ◡ 𝐹 ∧ 𝐺 ∈ USPGraph ) → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 65 | 64 | expd | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( Fun ◡ 𝐹 → ( 𝐺 ∈ USPGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 66 | 65 | 3adant2 | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( Fun ◡ 𝐹 → ( 𝐺 ∈ USPGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 67 | 6 66 | biimtrdi | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( Fun ◡ 𝐹 → ( 𝐺 ∈ USPGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) ) |
| 68 | 67 | impd | ⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) → ( 𝐺 ∈ USPGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 69 | 68 | com23 | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐺 ∈ USPGraph → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 70 | 3 69 | mpcom | ⊢ ( 𝐺 ∈ USPGraph → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 71 | 70 | com12 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) → ( 𝐺 ∈ USPGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 72 | 2 71 | sylbi | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ USPGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 73 | 72 | imp | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ 𝐺 ∈ USPGraph ) → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 74 | 73 | necon2d | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ 𝐺 ∈ USPGraph ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ≠ 2 ) ) |
| 75 | 74 | impancom | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐺 ∈ USPGraph → ( ♯ ‘ 𝐹 ) ≠ 2 ) ) |
| 76 | 1 75 | syl | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ USPGraph → ( ♯ ‘ 𝐹 ) ≠ 2 ) ) |
| 77 | 76 | impcom | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ 𝐹 ) ≠ 2 ) |