This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1cofveqaeq | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) → 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐵 –1-1→ 𝐶 ) | |
| 2 | f1f | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 3 | ffvelcdm | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ) | |
| 4 | 3 | ex | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( 𝑋 ∈ 𝐴 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 5 | ffvelcdm | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑌 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) | |
| 6 | 5 | ex | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( 𝑌 ∈ 𝐴 → ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) |
| 7 | 4 6 | anim12d | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) ) |
| 8 | 2 7 | syl | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) |
| 11 | f1veqaeq | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ ( ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ) | |
| 12 | 1 10 11 | syl2an2r | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
| 13 | f1veqaeq | ⊢ ( ( 𝐺 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) | |
| 14 | 13 | adantll | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 15 | 12 14 | syld | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) → 𝑋 = 𝑌 ) ) |