This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A syllogism inference. (Contributed by Alan Sare, 8-Jul-2011) (Proof shortened by Wolf Lammen, 13-Sep-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl6mpi.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| syl6mpi.2 | ⊢ 𝜃 | ||
| syl6mpi.3 | ⊢ ( 𝜒 → ( 𝜃 → 𝜏 ) ) | ||
| Assertion | syl6mpi | ⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6mpi.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | syl6mpi.2 | ⊢ 𝜃 | |
| 3 | syl6mpi.3 | ⊢ ( 𝜒 → ( 𝜃 → 𝜏 ) ) | |
| 4 | 2 3 | mpi | ⊢ ( 𝜒 → 𝜏 ) |
| 5 | 1 4 | syl6 | ⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) |