This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | ⊢ 2 ∈ ℤ | |
| 2 | fzoval | ⊢ ( 2 ∈ ℤ → ( 0 ..^ 2 ) = ( 0 ... ( 2 − 1 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 0 ..^ 2 ) = ( 0 ... ( 2 − 1 ) ) |
| 4 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 5 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 6 | 4 5 | eqtr4i | ⊢ ( 2 − 1 ) = ( 0 + 1 ) |
| 7 | 6 | oveq2i | ⊢ ( 0 ... ( 2 − 1 ) ) = ( 0 ... ( 0 + 1 ) ) |
| 8 | 0z | ⊢ 0 ∈ ℤ | |
| 9 | fzpr | ⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } ) | |
| 10 | 5 | preq2i | ⊢ { 0 , ( 0 + 1 ) } = { 0 , 1 } |
| 11 | 9 10 | eqtrdi | ⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 1 ) ) = { 0 , 1 } ) |
| 12 | 8 11 | ax-mp | ⊢ ( 0 ... ( 0 + 1 ) ) = { 0 , 1 } |
| 13 | 3 7 12 | 3eqtri | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } |