This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021) (Revised by AV, 28-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgriswlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgriswlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | upgriswlk | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgriswlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgriswlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | iswlkg | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 4 | df-ifp | ⊢ ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | |
| 5 | dfsn2 | ⊢ { ( 𝑃 ‘ 𝑘 ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ 𝑘 ) } | |
| 6 | preq2 | ⊢ ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ 𝑘 ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) | |
| 7 | 5 6 | eqtrid | ⊢ ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → { ( 𝑃 ‘ 𝑘 ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 8 | 7 | eqeq2d | ⊢ ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 9 | 8 | biimpa | ⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 10 | 9 | a1d | ⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) → ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 11 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 12 | 2 11 | upgredginwlk | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼 ) → ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) ) |
| 13 | 12 | adantrr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) → ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 15 | simp-4l | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → 𝐺 ∈ UPGraph ) | |
| 16 | simpr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) | |
| 17 | 16 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 18 | simpr | ⊢ ( ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 19 | 18 | adantl | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 20 | fvexd | ⊢ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ V ) | |
| 21 | fvexd | ⊢ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ V ) | |
| 22 | neqne | ⊢ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) | |
| 23 | 20 21 22 | 3jca | ⊢ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ V ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ V ∧ ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ V ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ V ∧ ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ V ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ V ∧ ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 26 | 1 11 | upgredgpr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( ( 𝑃 ‘ 𝑘 ) ∈ V ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ V ∧ ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 27 | 15 17 19 25 26 | syl31anc | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 28 | 27 | eqcomd | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 29 | 28 | exp31 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) → ( ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
| 30 | 14 29 | mpd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 31 | 30 | com12 | ⊢ ( ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 32 | 10 31 | jaoi | ⊢ ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 33 | 32 | com12 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 34 | 4 33 | biimtrid | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 35 | ifpprsnss | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | |
| 36 | 34 35 | impbid1 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 37 | 36 | ralbidva | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
| 38 | 37 | pm5.32da | ⊢ ( 𝐺 ∈ UPGraph → ( ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
| 39 | df-3an | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | |
| 40 | df-3an | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) | |
| 41 | 38 39 40 | 3bitr4g | ⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
| 42 | 3 41 | bitrd | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |