This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2wlklem | ⊢ ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( ( 𝐸 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐸 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | ⊢ 0 ∈ V | |
| 2 | 1ex | ⊢ 1 ∈ V | |
| 3 | 2fveq3 | ⊢ ( 𝑘 = 0 → ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ 0 ) ) ) | |
| 4 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) | |
| 5 | fv0p1e1 | ⊢ ( 𝑘 = 0 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 1 ) ) | |
| 6 | 4 5 | preq12d | ⊢ ( 𝑘 = 0 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 7 | 3 6 | eqeq12d | ⊢ ( 𝑘 = 0 → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( 𝐸 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 8 | 2fveq3 | ⊢ ( 𝑘 = 1 → ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ 1 ) ) ) | |
| 9 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 1 ) ) | |
| 10 | oveq1 | ⊢ ( 𝑘 = 1 → ( 𝑘 + 1 ) = ( 1 + 1 ) ) | |
| 11 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 12 | 10 11 | eqtrdi | ⊢ ( 𝑘 = 1 → ( 𝑘 + 1 ) = 2 ) |
| 13 | 12 | fveq2d | ⊢ ( 𝑘 = 1 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 2 ) ) |
| 14 | 9 13 | preq12d | ⊢ ( 𝑘 = 1 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 15 | 8 14 | eqeq12d | ⊢ ( 𝑘 = 1 → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( 𝐸 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 16 | 1 2 7 15 | ralpr | ⊢ ( ∀ 𝑘 ∈ { 0 , 1 } ( 𝐸 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( ( 𝐸 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐸 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |