This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple pseudograph there are no circuits with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017) (Revised by AV, 3-Feb-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgrn2crct | |- ( ( G e. USPGraph /\ F ( Circuits ` G ) P ) -> ( # ` F ) =/= 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctprop | |- ( F ( Circuits ` G ) P -> ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 2 | istrl | |- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
|
| 3 | uspgrupgr | |- ( G e. USPGraph -> G e. UPGraph ) |
|
| 4 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 5 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 6 | 4 5 | upgriswlk | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 7 | preq2 | |- ( ( P ` 2 ) = ( P ` 0 ) -> { ( P ` 1 ) , ( P ` 2 ) } = { ( P ` 1 ) , ( P ` 0 ) } ) |
|
| 8 | prcom | |- { ( P ` 1 ) , ( P ` 0 ) } = { ( P ` 0 ) , ( P ` 1 ) } |
|
| 9 | 7 8 | eqtrdi | |- ( ( P ` 2 ) = ( P ` 0 ) -> { ( P ` 1 ) , ( P ` 2 ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 10 | 9 | eqcoms | |- ( ( P ` 0 ) = ( P ` 2 ) -> { ( P ` 1 ) , ( P ` 2 ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 11 | 10 | eqeq2d | |- ( ( P ` 0 ) = ( P ` 2 ) -> ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } <-> ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 12 | 11 | anbi2d | |- ( ( P ` 0 ) = ( P ` 2 ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) ) |
| 13 | 12 | ad2antrr | |- ( ( ( ( P ` 0 ) = ( P ` 2 ) /\ ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) ) |
| 14 | eqtr3 | |- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) -> ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) ) |
|
| 15 | 4 5 | uspgrf | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 16 | 15 | adantl | |- ( ( Fun `' F /\ G e. USPGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 17 | 16 | adantl | |- ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 18 | 17 | adantr | |- ( ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 19 | df-f1 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) <-> ( F : ( 0 ..^ ( # ` F ) ) --> dom ( iEdg ` G ) /\ Fun `' F ) ) |
|
| 20 | 19 | simplbi2 | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom ( iEdg ` G ) -> ( Fun `' F -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) ) |
| 21 | wrdf | |- ( F e. Word dom ( iEdg ` G ) -> F : ( 0 ..^ ( # ` F ) ) --> dom ( iEdg ` G ) ) |
|
| 22 | 20 21 | syl11 | |- ( Fun `' F -> ( F e. Word dom ( iEdg ` G ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) ) |
| 23 | 22 | adantr | |- ( ( Fun `' F /\ G e. USPGraph ) -> ( F e. Word dom ( iEdg ` G ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) ) |
| 24 | 23 | adantl | |- ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( F e. Word dom ( iEdg ` G ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) ) |
| 25 | 24 | imp | |- ( ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) /\ F e. Word dom ( iEdg ` G ) ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) |
| 26 | 2nn | |- 2 e. NN |
|
| 27 | lbfzo0 | |- ( 0 e. ( 0 ..^ 2 ) <-> 2 e. NN ) |
|
| 28 | 26 27 | mpbir | |- 0 e. ( 0 ..^ 2 ) |
| 29 | 1nn0 | |- 1 e. NN0 |
|
| 30 | 1lt2 | |- 1 < 2 |
|
| 31 | elfzo0 | |- ( 1 e. ( 0 ..^ 2 ) <-> ( 1 e. NN0 /\ 2 e. NN /\ 1 < 2 ) ) |
|
| 32 | 29 26 30 31 | mpbir3an | |- 1 e. ( 0 ..^ 2 ) |
| 33 | 28 32 | pm3.2i | |- ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) |
| 34 | oveq2 | |- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) |
|
| 35 | 34 | eleq2d | |- ( ( # ` F ) = 2 -> ( 0 e. ( 0 ..^ ( # ` F ) ) <-> 0 e. ( 0 ..^ 2 ) ) ) |
| 36 | 34 | eleq2d | |- ( ( # ` F ) = 2 -> ( 1 e. ( 0 ..^ ( # ` F ) ) <-> 1 e. ( 0 ..^ 2 ) ) ) |
| 37 | 35 36 | anbi12d | |- ( ( # ` F ) = 2 -> ( ( 0 e. ( 0 ..^ ( # ` F ) ) /\ 1 e. ( 0 ..^ ( # ` F ) ) ) <-> ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) ) ) |
| 38 | 33 37 | mpbiri | |- ( ( # ` F ) = 2 -> ( 0 e. ( 0 ..^ ( # ` F ) ) /\ 1 e. ( 0 ..^ ( # ` F ) ) ) ) |
| 39 | 38 | ad2antrr | |- ( ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( 0 e. ( 0 ..^ ( # ` F ) ) /\ 1 e. ( 0 ..^ ( # ` F ) ) ) ) |
| 40 | f1cofveqaeq | |- ( ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) /\ ( 0 e. ( 0 ..^ ( # ` F ) ) /\ 1 e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> 0 = 1 ) ) |
|
| 41 | 18 25 39 40 | syl21anc | |- ( ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> 0 = 1 ) ) |
| 42 | 0ne1 | |- 0 =/= 1 |
|
| 43 | eqneqall | |- ( 0 = 1 -> ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
|
| 44 | 41 42 43 | syl6mpi | |- ( ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 45 | 44 | adantll | |- ( ( ( ( P ` 0 ) = ( P ` 2 ) /\ ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 46 | 14 45 | syl5 | |- ( ( ( ( P ` 0 ) = ( P ` 2 ) /\ ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 47 | 13 46 | sylbid | |- ( ( ( ( P ` 0 ) = ( P ` 2 ) /\ ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 48 | 47 | expimpd | |- ( ( ( P ` 0 ) = ( P ` 2 ) /\ ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 49 | 48 | ex | |- ( ( P ` 0 ) = ( P ` 2 ) -> ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 50 | 2a1 | |- ( ( P ` 0 ) =/= ( P ` 2 ) -> ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
|
| 51 | 49 50 | pm2.61ine | |- ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 52 | fzo0to2pr | |- ( 0 ..^ 2 ) = { 0 , 1 } |
|
| 53 | 34 52 | eqtrdi | |- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 } ) |
| 54 | 53 | raleqdv | |- ( ( # ` F ) = 2 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 55 | 2wlklem | |- ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
|
| 56 | 54 55 | bitrdi | |- ( ( # ` F ) = 2 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) |
| 57 | 56 | anbi2d | |- ( ( # ` F ) = 2 -> ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
| 58 | fveq2 | |- ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = ( P ` 2 ) ) |
|
| 59 | 58 | neeq2d | |- ( ( # ` F ) = 2 -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 60 | 57 59 | imbi12d | |- ( ( # ` F ) = 2 -> ( ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 61 | 60 | adantr | |- ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
| 62 | 51 61 | mpbird | |- ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 63 | 62 | ex | |- ( ( # ` F ) = 2 -> ( ( Fun `' F /\ G e. USPGraph ) -> ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
| 64 | 63 | com13 | |- ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( ( Fun `' F /\ G e. USPGraph ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
| 65 | 64 | expd | |- ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( Fun `' F -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) ) |
| 66 | 65 | 3adant2 | |- ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( Fun `' F -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) ) |
| 67 | 6 66 | biimtrdi | |- ( G e. UPGraph -> ( F ( Walks ` G ) P -> ( Fun `' F -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) ) ) |
| 68 | 67 | impd | |- ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ Fun `' F ) -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) ) |
| 69 | 68 | com23 | |- ( G e. UPGraph -> ( G e. USPGraph -> ( ( F ( Walks ` G ) P /\ Fun `' F ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) ) |
| 70 | 3 69 | mpcom | |- ( G e. USPGraph -> ( ( F ( Walks ` G ) P /\ Fun `' F ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
| 71 | 70 | com12 | |- ( ( F ( Walks ` G ) P /\ Fun `' F ) -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
| 72 | 2 71 | sylbi | |- ( F ( Trails ` G ) P -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
| 73 | 72 | imp | |- ( ( F ( Trails ` G ) P /\ G e. USPGraph ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 74 | 73 | necon2d | |- ( ( F ( Trails ` G ) P /\ G e. USPGraph ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( # ` F ) =/= 2 ) ) |
| 75 | 74 | impancom | |- ( ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( G e. USPGraph -> ( # ` F ) =/= 2 ) ) |
| 76 | 1 75 | syl | |- ( F ( Circuits ` G ) P -> ( G e. USPGraph -> ( # ` F ) =/= 2 ) ) |
| 77 | 76 | impcom | |- ( ( G e. USPGraph /\ F ( Circuits ` G ) P ) -> ( # ` F ) =/= 2 ) |