This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqneqall | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | ⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) | |
| 2 | pm2.24 | ⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐴 = 𝐵 → 𝜑 ) ) | |
| 3 | 1 2 | biimtrid | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → 𝜑 ) ) |