This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A local isomorphism of simple pseudographs is a bijection between their vertices that preserves neighborhoods, expressed by properties of their edges (not edge functions as in isgrlim2 ). (Contributed by AV, 15-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrlim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uspgrlim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| uspgrlim.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | ||
| uspgrlim.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | ||
| uspgrlim.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| uspgrlim.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| uspgrlim.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| uspgrlim.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | uspgrlim | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrlim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uspgrlim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | uspgrlim.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | |
| 4 | uspgrlim.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | |
| 5 | uspgrlim.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 6 | uspgrlim.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 7 | uspgrlim.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 8 | uspgrlim.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 9 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 11 | eqid | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } | |
| 12 | eqid | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } | |
| 13 | 1 2 3 4 9 10 11 12 | isgrlim2 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) ) ) |
| 14 | fvex | ⊢ ( iEdg ‘ 𝐻 ) ∈ V | |
| 15 | vex | ⊢ ℎ ∈ V | |
| 16 | 14 15 | coex | ⊢ ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∈ V |
| 17 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 18 | 17 | cnvex | ⊢ ◡ ( iEdg ‘ 𝐺 ) ∈ V |
| 19 | 16 18 | coex | ⊢ ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ∈ V |
| 20 | 19 | a1i | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ∈ V ) |
| 21 | 9 | uspgrf1oedg | ⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 23 | simprl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) | |
| 24 | 10 | uspgrf1oedg | ⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 26 | ssrab2 | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) | |
| 27 | ssrab2 | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) | |
| 28 | 26 27 | pm3.2i | ⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) ) |
| 29 | 28 | a1i | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) ) ) |
| 30 | 3f1oss1 | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) ∧ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) : ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) –1-1-onto→ ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) | |
| 31 | 22 23 25 29 30 | syl31anc | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) : ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) –1-1-onto→ ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 32 | eqidd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ) | |
| 33 | 3 5 7 | uspgrlimlem1 | ⊢ ( 𝐺 ∈ USPGraph → 𝐾 = ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → 𝐾 = ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 35 | 4 6 8 | uspgrlimlem1 | ⊢ ( 𝐻 ∈ USPGraph → 𝐿 = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 36 | 35 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → 𝐿 = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 37 | 32 34 36 | f1oeq123d | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) : 𝐾 –1-1-onto→ 𝐿 ↔ ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) : ( ( iEdg ‘ 𝐺 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) –1-1-onto→ ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) ) |
| 38 | 31 37 | mpbird | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) : 𝐾 –1-1-onto→ 𝐿 ) |
| 39 | simpll | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → 𝐺 ∈ USPGraph ) | |
| 40 | simprr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) | |
| 41 | 1 2 3 4 5 6 7 8 | uspgrlimlem3 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ( 𝑒 ∈ 𝐾 → ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) |
| 42 | 39 23 40 41 | syl3anc | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( 𝑒 ∈ 𝐾 → ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) |
| 43 | 42 | ralrimiv | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) |
| 44 | 38 43 | jca | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) |
| 45 | f1oeq1 | ⊢ ( 𝑔 = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) → ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ↔ ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) : 𝐾 –1-1-onto→ 𝐿 ) ) | |
| 46 | fveq1 | ⊢ ( 𝑔 = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) → ( 𝑔 ‘ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) | |
| 47 | 46 | eqeq2d | ⊢ ( 𝑔 = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) → ( ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) |
| 48 | 47 | ralbidv | ⊢ ( 𝑔 = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) |
| 49 | 45 48 | anbi12d | ⊢ ( 𝑔 = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) → ( ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ↔ ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) ) |
| 50 | 20 44 49 | spcedv | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) → ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) |
| 51 | 50 | ex | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
| 52 | 51 | exlimdv | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
| 53 | 14 | cnvex | ⊢ ◡ ( iEdg ‘ 𝐻 ) ∈ V |
| 54 | vex | ⊢ 𝑔 ∈ V | |
| 55 | 53 54 | coex | ⊢ ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∈ V |
| 56 | 55 17 | coex | ⊢ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ∈ V |
| 57 | 56 | a1i | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ∈ V ) |
| 58 | 21 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 59 | simprl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) | |
| 60 | 24 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 61 | 5 | rabeqi | ⊢ { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } = { 𝑥 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑥 ⊆ 𝑁 } |
| 62 | 7 61 | eqtri | ⊢ 𝐾 = { 𝑥 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑥 ⊆ 𝑁 } |
| 63 | 62 | ssrab3 | ⊢ 𝐾 ⊆ ( Edg ‘ 𝐺 ) |
| 64 | 6 | rabeqi | ⊢ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥 ⊆ 𝑀 } |
| 65 | 8 64 | eqtri | ⊢ 𝐿 = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥 ⊆ 𝑀 } |
| 66 | 65 | ssrab3 | ⊢ 𝐿 ⊆ ( Edg ‘ 𝐻 ) |
| 67 | 63 66 | pm3.2i | ⊢ ( 𝐾 ⊆ ( Edg ‘ 𝐺 ) ∧ 𝐿 ⊆ ( Edg ‘ 𝐻 ) ) |
| 68 | 67 | a1i | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( 𝐾 ⊆ ( Edg ‘ 𝐺 ) ∧ 𝐿 ⊆ ( Edg ‘ 𝐻 ) ) ) |
| 69 | 3f1oss2 | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) ∧ ( 𝐾 ⊆ ( Edg ‘ 𝐺 ) ∧ 𝐿 ⊆ ( Edg ‘ 𝐻 ) ) ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : ( ◡ ( iEdg ‘ 𝐺 ) “ 𝐾 ) –1-1-onto→ ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) ) | |
| 70 | 58 59 60 68 69 | syl31anc | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : ( ◡ ( iEdg ‘ 𝐺 ) “ 𝐾 ) –1-1-onto→ ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) ) |
| 71 | eqidd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) = ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ) | |
| 72 | 3 5 7 | uspgrlimlem2 | ⊢ ( 𝐺 ∈ USPGraph → ( ◡ ( iEdg ‘ 𝐺 ) “ 𝐾 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) |
| 73 | 72 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ◡ ( iEdg ‘ 𝐺 ) “ 𝐾 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) |
| 74 | 4 6 8 | uspgrlimlem2 | ⊢ ( 𝐻 ∈ USPGraph → ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) |
| 75 | 74 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) |
| 76 | 71 73 75 | f1oeq123d | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : ( ◡ ( iEdg ‘ 𝐺 ) “ 𝐾 ) –1-1-onto→ ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) ↔ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 77 | 70 76 | mpbid | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) |
| 78 | fveq2 | ⊢ ( 𝑥 = 𝑖 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) | |
| 79 | 78 | sseq1d | ⊢ ( 𝑥 = 𝑖 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) |
| 80 | 79 | elrab | ⊢ ( 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ↔ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) |
| 81 | 1 2 3 4 5 6 7 8 | uspgrlimlem4 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) ) |
| 82 | 80 81 | biimtrid | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) ) |
| 83 | 82 | ralrimiv | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) |
| 84 | 77 83 | jca | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) ) |
| 85 | f1oeq1 | ⊢ ( ℎ = ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ↔ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) | |
| 86 | fveq1 | ⊢ ( ℎ = ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ℎ ‘ 𝑖 ) = ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) | |
| 87 | 86 | fveq2d | ⊢ ( ℎ = ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) |
| 88 | 87 | eqeq2d | ⊢ ( ℎ = ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) ) |
| 89 | 88 | ralbidv | ⊢ ( ℎ = ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) ) |
| 90 | 85 89 | anbi12d | ⊢ ( ℎ = ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) → ( ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ↔ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) ) ) |
| 91 | 57 84 90 | spcedv | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 92 | 91 | ex | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 93 | 92 | exlimdv | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 94 | 52 93 | impbid | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) |
| 95 | 94 | anbi2d | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ↔ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 96 | 95 | exbidv | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 97 | 96 | ralbidv | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ↔ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) |
| 98 | 97 | anbi2d | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) ) |
| 99 | 98 | 3adant3 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑍 ) → ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) ) |
| 100 | 13 99 | bitrd | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ) ) ) |