This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of three bijections as bijection from the image of the domain onto the image of the range of the middle bijection. (Contributed by AV, 15-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3f1oss1 | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 2 | f1of1 | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
| 6 | cnvimass | ⊢ ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ dom ◡ 𝐹 | |
| 7 | f1of | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) | |
| 8 | fdm | ⊢ ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 → dom ◡ 𝐹 = 𝐵 ) | |
| 9 | 8 | eqcomd | ⊢ ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 → 𝐵 = dom ◡ 𝐹 ) |
| 10 | 1 7 9 | 3syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 = dom ◡ 𝐹 ) |
| 11 | 6 10 | sseqtrrid | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 14 | f1ofn | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 Fn 𝐵 ) | |
| 15 | 1 14 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 Fn 𝐵 ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ◡ 𝐹 Fn 𝐵 ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ 𝐹 Fn 𝐵 ) |
| 18 | eqidd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ran ◡ 𝐹 ∩ 𝐶 ) = ( ran ◡ 𝐹 ∩ 𝐶 ) ) | |
| 19 | eqidd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ ◡ 𝐹 “ 𝐶 ) = ( ◡ ◡ 𝐹 “ 𝐶 ) ) | |
| 20 | 17 18 19 | rescnvimafod | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –onto→ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
| 21 | fof | ⊢ ( ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –onto→ ( ran ◡ 𝐹 ∩ 𝐶 ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) ⟶ ( ran ◡ 𝐹 ∩ 𝐶 ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) ⟶ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
| 23 | f1resf1 | ⊢ ( ( ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ∧ ( ◡ ◡ 𝐹 “ 𝐶 ) ⊆ 𝐵 ∧ ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) ⟶ ( ran ◡ 𝐹 ∩ 𝐶 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ) | |
| 24 | 5 13 22 23 | syl3anc | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ) |
| 25 | f1of1 | ⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 –1-1→ 𝐷 ) | |
| 26 | 25 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → 𝐺 : 𝐶 –1-1→ 𝐷 ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐺 : 𝐶 –1-1→ 𝐷 ) |
| 28 | inss2 | ⊢ ( ran ◡ 𝐹 ∩ 𝐶 ) ⊆ 𝐶 | |
| 29 | f1ores | ⊢ ( ( 𝐺 : 𝐶 –1-1→ 𝐷 ∧ ( ran ◡ 𝐹 ∩ 𝐶 ) ⊆ 𝐶 ) → ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) | |
| 30 | 27 28 29 | sylancl | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) |
| 31 | f1ofo | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 –onto→ 𝐴 ) | |
| 32 | forn | ⊢ ( ◡ 𝐹 : 𝐵 –onto→ 𝐴 → ran ◡ 𝐹 = 𝐴 ) | |
| 33 | 1 31 32 | 3syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ran ◡ 𝐹 = 𝐴 ) |
| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ran ◡ 𝐹 = 𝐴 ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ran ◡ 𝐹 = 𝐴 ) |
| 36 | 35 | ineq1d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ran ◡ 𝐹 ∩ 𝐶 ) = ( 𝐴 ∩ 𝐶 ) ) |
| 37 | incom | ⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐴 ) | |
| 38 | dfss2 | ⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐶 ∩ 𝐴 ) = 𝐶 ) | |
| 39 | 38 | biimpi | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐶 ∩ 𝐴 ) = 𝐶 ) |
| 40 | 37 39 | eqtrid | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
| 41 | 40 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
| 42 | 36 41 | eqtrd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ran ◡ 𝐹 ∩ 𝐶 ) = 𝐶 ) |
| 43 | 42 | imaeq2d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) = ( 𝐺 “ 𝐶 ) ) |
| 44 | f1ofn | ⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 Fn 𝐶 ) | |
| 45 | fnima | ⊢ ( 𝐺 Fn 𝐶 → ( 𝐺 “ 𝐶 ) = ran 𝐺 ) | |
| 46 | 44 45 | syl | ⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → ( 𝐺 “ 𝐶 ) = ran 𝐺 ) |
| 47 | f1ofo | ⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 –onto→ 𝐷 ) | |
| 48 | forn | ⊢ ( 𝐺 : 𝐶 –onto→ 𝐷 → ran 𝐺 = 𝐷 ) | |
| 49 | 47 48 | syl | ⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → ran 𝐺 = 𝐷 ) |
| 50 | 46 49 | eqtrd | ⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → ( 𝐺 “ 𝐶 ) = 𝐷 ) |
| 51 | 50 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ( 𝐺 “ 𝐶 ) = 𝐷 ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 “ 𝐶 ) = 𝐷 ) |
| 53 | 43 52 | eqtrd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) = 𝐷 ) |
| 54 | 53 | eqcomd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐷 = ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) |
| 55 | 54 | f1oeq3d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ ( 𝐺 “ ( ran ◡ 𝐹 ∩ 𝐶 ) ) ) ) |
| 56 | 30 55 | mpbird | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ) |
| 57 | f1orel | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) | |
| 58 | 57 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → Rel 𝐹 ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → Rel 𝐹 ) |
| 60 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
| 61 | 59 60 | sylib | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ ◡ 𝐹 = 𝐹 ) |
| 62 | 61 | eqcomd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐹 = ◡ ◡ 𝐹 ) |
| 63 | 62 | imaeq1d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐹 “ 𝐶 ) = ( ◡ ◡ 𝐹 “ 𝐶 ) ) |
| 64 | 63 | f1oeq2d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( 𝐺 ∘ ◡ 𝐹 ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ) ) |
| 65 | 1 7 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 66 | 65 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 67 | 66 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 68 | eqid | ⊢ ( ran ◡ 𝐹 ∩ 𝐶 ) = ( ran ◡ 𝐹 ∩ 𝐶 ) | |
| 69 | eqid | ⊢ ( ◡ ◡ 𝐹 “ 𝐶 ) = ( ◡ ◡ 𝐹 “ 𝐶 ) | |
| 70 | eqid | ⊢ ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) = ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) | |
| 71 | f1of | ⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 ⟶ 𝐷 ) | |
| 72 | 71 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 74 | eqid | ⊢ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) = ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) | |
| 75 | 67 68 69 70 73 74 | fcoresf1ob | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ∧ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ) ) ) |
| 76 | 64 75 | bitrd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ↔ ( ( ◡ 𝐹 ↾ ( ◡ ◡ 𝐹 “ 𝐶 ) ) : ( ◡ ◡ 𝐹 “ 𝐶 ) –1-1→ ( ran ◡ 𝐹 ∩ 𝐶 ) ∧ ( 𝐺 ↾ ( ran ◡ 𝐹 ∩ 𝐶 ) ) : ( ran ◡ 𝐹 ∩ 𝐶 ) –1-1-onto→ 𝐷 ) ) ) |
| 77 | 24 56 76 | mpbir2and | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ) |
| 78 | simpl3 | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) | |
| 79 | simprr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → 𝐷 ⊆ 𝐸 ) | |
| 80 | f1ocoima | ⊢ ( ( ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ∧ 𝐷 ⊆ 𝐸 ) → ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) | |
| 81 | 77 78 79 80 | syl3anc | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |
| 82 | coass | ⊢ ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) = ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) | |
| 83 | f1oeq1 | ⊢ ( ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) = ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) → ( ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ↔ ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) ) | |
| 84 | 82 83 | ax-mp | ⊢ ( ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ↔ ( 𝐻 ∘ ( 𝐺 ∘ ◡ 𝐹 ) ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |
| 85 | 81 84 | sylibr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐻 : 𝐸 –1-1-onto→ 𝐼 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸 ) ) → ( ( 𝐻 ∘ 𝐺 ) ∘ ◡ 𝐹 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ ( 𝐻 “ 𝐷 ) ) |