This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020) (Revised by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrf1o.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| Assertion | uspgrf1oedg | ⊢ ( 𝐺 ∈ USPGraph → 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1o.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | 2 1 | uspgrf | ⊢ ( 𝐺 ∈ USPGraph → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 4 | f1f1orn | ⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) | |
| 5 | 1 | rneqi | ⊢ ran 𝐸 = ran ( iEdg ‘ 𝐺 ) |
| 6 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 7 | 5 6 | eqtr4i | ⊢ ran 𝐸 = ( Edg ‘ 𝐺 ) |
| 8 | f1oeq3 | ⊢ ( ran 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ↔ 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ↔ 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 10 | 4 9 | sylib | ⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 11 | 3 10 | syl | ⊢ ( 𝐺 ∈ USPGraph → 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |