This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A local isomorphism of simple pseudographs is a bijection between their vertices that preserves neighborhoods, expressed by properties of their edges (not edge functions as in isgrlim2 ). (Contributed by AV, 15-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrlim.v | |- V = ( Vtx ` G ) |
|
| uspgrlim.w | |- W = ( Vtx ` H ) |
||
| uspgrlim.n | |- N = ( G ClNeighbVtx v ) |
||
| uspgrlim.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
||
| uspgrlim.i | |- I = ( Edg ` G ) |
||
| uspgrlim.j | |- J = ( Edg ` H ) |
||
| uspgrlim.k | |- K = { x e. I | x C_ N } |
||
| uspgrlim.l | |- L = { x e. J | x C_ M } |
||
| Assertion | uspgrlim | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrlim.v | |- V = ( Vtx ` G ) |
|
| 2 | uspgrlim.w | |- W = ( Vtx ` H ) |
|
| 3 | uspgrlim.n | |- N = ( G ClNeighbVtx v ) |
|
| 4 | uspgrlim.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
|
| 5 | uspgrlim.i | |- I = ( Edg ` G ) |
|
| 6 | uspgrlim.j | |- J = ( Edg ` H ) |
|
| 7 | uspgrlim.k | |- K = { x e. I | x C_ N } |
|
| 8 | uspgrlim.l | |- L = { x e. J | x C_ M } |
|
| 9 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 10 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 11 | eqid | |- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } |
|
| 12 | eqid | |- { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } |
|
| 13 | 1 2 3 4 9 10 11 12 | isgrlim2 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) ) |
| 14 | fvex | |- ( iEdg ` H ) e. _V |
|
| 15 | vex | |- h e. _V |
|
| 16 | 14 15 | coex | |- ( ( iEdg ` H ) o. h ) e. _V |
| 17 | fvex | |- ( iEdg ` G ) e. _V |
|
| 18 | 17 | cnvex | |- `' ( iEdg ` G ) e. _V |
| 19 | 16 18 | coex | |- ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) e. _V |
| 20 | 19 | a1i | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) e. _V ) |
| 21 | 9 | uspgrf1oedg | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 22 | 21 | ad2antrr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 23 | simprl | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
|
| 24 | 10 | uspgrf1oedg | |- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 25 | 24 | ad2antlr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 26 | ssrab2 | |- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) |
|
| 27 | ssrab2 | |- { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) |
|
| 28 | 26 27 | pm3.2i | |- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) ) |
| 29 | 28 | a1i | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) ) ) |
| 30 | 3f1oss1 | |- ( ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) /\ ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) ) ) -> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -1-1-onto-> ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
|
| 31 | 22 23 25 29 30 | syl31anc | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -1-1-onto-> ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 32 | eqidd | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ) |
|
| 33 | 3 5 7 | uspgrlimlem1 | |- ( G e. USPGraph -> K = ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
| 34 | 33 | ad2antrr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> K = ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
| 35 | 4 6 8 | uspgrlimlem1 | |- ( H e. USPGraph -> L = ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 36 | 35 | ad2antlr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> L = ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 37 | 32 34 36 | f1oeq123d | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : K -1-1-onto-> L <-> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -1-1-onto-> ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) ) |
| 38 | 31 37 | mpbird | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : K -1-1-onto-> L ) |
| 39 | simpll | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> G e. USPGraph ) |
|
| 40 | simprr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) |
|
| 41 | 1 2 3 4 5 6 7 8 | uspgrlimlem3 | |- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> ( e e. K -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 42 | 39 23 40 41 | syl3anc | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( e e. K -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 43 | 42 | ralrimiv | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> A. e e. K ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) |
| 44 | 38 43 | jca | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 45 | f1oeq1 | |- ( g = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) -> ( g : K -1-1-onto-> L <-> ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : K -1-1-onto-> L ) ) |
|
| 46 | fveq1 | |- ( g = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) -> ( g ` e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) |
|
| 47 | 46 | eqeq2d | |- ( g = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) -> ( ( f " e ) = ( g ` e ) <-> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 48 | 47 | ralbidv | |- ( g = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) -> ( A. e e. K ( f " e ) = ( g ` e ) <-> A. e e. K ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 49 | 45 48 | anbi12d | |- ( g = ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) -> ( ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) <-> ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) ) |
| 50 | 20 44 49 | spcedv | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) -> E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) |
| 51 | 50 | ex | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) |
| 52 | 51 | exlimdv | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) |
| 53 | 14 | cnvex | |- `' ( iEdg ` H ) e. _V |
| 54 | vex | |- g e. _V |
|
| 55 | 53 54 | coex | |- ( `' ( iEdg ` H ) o. g ) e. _V |
| 56 | 55 17 | coex | |- ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) e. _V |
| 57 | 56 | a1i | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) e. _V ) |
| 58 | 21 | ad2antrr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 59 | simprl | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> g : K -1-1-onto-> L ) |
|
| 60 | 24 | ad2antlr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 61 | 5 | rabeqi | |- { x e. I | x C_ N } = { x e. ( Edg ` G ) | x C_ N } |
| 62 | 7 61 | eqtri | |- K = { x e. ( Edg ` G ) | x C_ N } |
| 63 | 62 | ssrab3 | |- K C_ ( Edg ` G ) |
| 64 | 6 | rabeqi | |- { x e. J | x C_ M } = { x e. ( Edg ` H ) | x C_ M } |
| 65 | 8 64 | eqtri | |- L = { x e. ( Edg ` H ) | x C_ M } |
| 66 | 65 | ssrab3 | |- L C_ ( Edg ` H ) |
| 67 | 63 66 | pm3.2i | |- ( K C_ ( Edg ` G ) /\ L C_ ( Edg ` H ) ) |
| 68 | 67 | a1i | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( K C_ ( Edg ` G ) /\ L C_ ( Edg ` H ) ) ) |
| 69 | 3f1oss2 | |- ( ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) /\ g : K -1-1-onto-> L /\ ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) /\ ( K C_ ( Edg ` G ) /\ L C_ ( Edg ` H ) ) ) -> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : ( `' ( iEdg ` G ) " K ) -1-1-onto-> ( `' ( iEdg ` H ) " L ) ) |
|
| 70 | 58 59 60 68 69 | syl31anc | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : ( `' ( iEdg ` G ) " K ) -1-1-onto-> ( `' ( iEdg ` H ) " L ) ) |
| 71 | eqidd | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ) |
|
| 72 | 3 5 7 | uspgrlimlem2 | |- ( G e. USPGraph -> ( `' ( iEdg ` G ) " K ) = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) |
| 73 | 72 | ad2antrr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( `' ( iEdg ` G ) " K ) = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) |
| 74 | 4 6 8 | uspgrlimlem2 | |- ( H e. USPGraph -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
| 75 | 74 | ad2antlr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
| 76 | 71 73 75 | f1oeq123d | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : ( `' ( iEdg ` G ) " K ) -1-1-onto-> ( `' ( iEdg ` H ) " L ) <-> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 77 | 70 76 | mpbid | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
| 78 | fveq2 | |- ( x = i -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` i ) ) |
|
| 79 | 78 | sseq1d | |- ( x = i -> ( ( ( iEdg ` G ) ` x ) C_ N <-> ( ( iEdg ` G ) ` i ) C_ N ) ) |
| 80 | 79 | elrab | |- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } <-> ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) |
| 81 | 1 2 3 4 5 6 7 8 | uspgrlimlem4 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| 82 | 80 81 | biimtrid | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| 83 | 82 | ralrimiv | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) |
| 84 | 77 83 | jca | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| 85 | f1oeq1 | |- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } <-> ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
|
| 86 | fveq1 | |- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( h ` i ) = ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) |
|
| 87 | 86 | fveq2d | |- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( h ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) |
| 88 | 87 | eqeq2d | |- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| 89 | 88 | ralbidv | |- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| 90 | 85 89 | anbi12d | |- ( h = ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) -> ( ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) ) |
| 91 | 57 84 90 | spcedv | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
| 92 | 91 | ex | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) -> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 93 | 92 | exlimdv | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) -> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 94 | 52 93 | impbid | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) |
| 95 | 94 | anbi2d | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) <-> ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) |
| 96 | 95 | exbidv | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( E. f ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) |
| 97 | 96 | ralbidv | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( A. v e. V E. f ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) <-> A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) |
| 98 | 97 | anbi2d | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) ) |
| 99 | 98 | 3adant3 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. Z ) -> ( ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) ) |
| 100 | 13 99 | bitrd | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) ) |