This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for uspgrlim . (Contributed by AV, 16-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrlim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uspgrlim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| uspgrlim.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | ||
| uspgrlim.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | ||
| uspgrlim.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| uspgrlim.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| uspgrlim.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| uspgrlim.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | uspgrlimlem3 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ( 𝑒 ∈ 𝐾 → ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrlim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uspgrlim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | uspgrlim.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | |
| 4 | uspgrlim.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | |
| 5 | uspgrlim.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 6 | uspgrlim.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 7 | uspgrlim.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 8 | uspgrlim.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 9 | sseq1 | ⊢ ( 𝑥 = 𝑒 → ( 𝑥 ⊆ 𝑁 ↔ 𝑒 ⊆ 𝑁 ) ) | |
| 10 | 9 7 | elrab2 | ⊢ ( 𝑒 ∈ 𝐾 ↔ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) |
| 11 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 12 | 11 | uspgrf1oedg | ⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 13 | f1ocnv | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) → ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐺 ) ) | |
| 14 | f1of | ⊢ ( ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐺 ) → ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐺 ) ) | |
| 15 | 12 13 14 | 3syl | ⊢ ( 𝐺 ∈ USPGraph → ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐺 ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐺 ) ) |
| 17 | 5 | eleq2i | ⊢ ( 𝑒 ∈ 𝐼 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 18 | 17 | biimpi | ⊢ ( 𝑒 ∈ 𝐼 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 20 | fvco3 | ⊢ ( ( ◡ ( iEdg ‘ 𝐺 ) : ( Edg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) | |
| 21 | 16 19 20 | syl2an | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) |
| 22 | f1ocnvdm | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 23 | 12 19 22 | syl2an | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 24 | f1ocnvfv2 | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = 𝑒 ) | |
| 25 | 12 19 24 | syl2an | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = 𝑒 ) |
| 26 | simprr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → 𝑒 ⊆ 𝑁 ) | |
| 27 | 25 26 | eqsstrd | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ⊆ 𝑁 ) |
| 28 | 23 27 | jca | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ⊆ 𝑁 ) ) |
| 29 | 28 | adantlr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ⊆ 𝑁 ) ) |
| 30 | fveq2 | ⊢ ( 𝑥 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) | |
| 31 | 30 | sseq1d | ⊢ ( 𝑥 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ⊆ 𝑁 ) ) |
| 32 | 31 | elrab | ⊢ ( ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ↔ ( ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ⊆ 𝑁 ) ) |
| 33 | 29 32 | sylibr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) |
| 34 | fveq2 | ⊢ ( 𝑖 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) | |
| 35 | 34 | imaeq2d | ⊢ ( 𝑖 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) |
| 36 | 2fveq3 | ⊢ ( 𝑖 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) | |
| 37 | 35 36 | eqeq12d | ⊢ ( 𝑖 = ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ) |
| 38 | 37 | rspcv | ⊢ ( ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ) |
| 39 | 33 38 | syl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ) |
| 40 | eqcom | ⊢ ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) | |
| 41 | f1of | ⊢ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 → ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⟶ 𝑅 ) | |
| 42 | 41 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⟶ 𝑅 ) |
| 43 | 42 33 | fvco3d | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) |
| 44 | 43 | eqcomd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) |
| 45 | 12 | adantr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 46 | 45 19 24 | syl2an | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = 𝑒 ) |
| 47 | 46 | imaeq2d | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( 𝑓 “ 𝑒 ) ) |
| 48 | 44 47 | eqeq12d | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ↔ ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) |
| 49 | 48 | biimpd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) |
| 50 | 40 49 | biimtrid | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) |
| 51 | 39 50 | syld | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) |
| 52 | 51 | ex | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) → ( ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) ) |
| 53 | 52 | com23 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) ) |
| 54 | 53 | ex | ⊢ ( 𝐺 ∈ USPGraph → ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) → ( ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) ) ) ) |
| 55 | 54 | 3imp1 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ‘ ( ◡ ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) = ( 𝑓 “ 𝑒 ) ) |
| 56 | 21 55 | eqtr2d | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ∧ ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) ) → ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) |
| 57 | 56 | ex | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ( ( 𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁 ) → ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) |
| 58 | 10 57 | biimtrid | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ 𝑅 ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) → ( 𝑒 ∈ 𝐾 → ( 𝑓 “ 𝑒 ) = ( ( ( ( iEdg ‘ 𝐻 ) ∘ ℎ ) ∘ ◡ ( iEdg ‘ 𝐺 ) ) ‘ 𝑒 ) ) ) |