This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for uspgrlim . (Contributed by AV, 16-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrlimlem1.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx 𝑋 ) | |
| uspgrlimlem1.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| uspgrlimlem1.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | uspgrlimlem2 | ⊢ ( 𝐻 ∈ USPGraph → ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrlimlem1.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx 𝑋 ) | |
| 2 | uspgrlimlem1.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 3 | uspgrlimlem1.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 5 | 4 | uspgrf1oedg | ⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 6 | f1ocnv | ⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) | |
| 7 | f1of | ⊢ ( ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( 𝐻 ∈ USPGraph → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 9 | 2 | rabeqi | ⊢ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥 ⊆ 𝑀 } |
| 10 | 3 9 | eqtri | ⊢ 𝐿 = { 𝑥 ∈ ( Edg ‘ 𝐻 ) ∣ 𝑥 ⊆ 𝑀 } |
| 11 | 10 | ssrab3 | ⊢ 𝐿 ⊆ ( Edg ‘ 𝐻 ) |
| 12 | fimarab | ⊢ ( ( ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ∧ 𝐿 ⊆ ( Edg ‘ 𝐻 ) ) → ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 } ) | |
| 13 | 8 11 12 | sylancl | ⊢ ( 𝐻 ∈ USPGraph → ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 } ) |
| 14 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝑀 ↔ 𝑦 ⊆ 𝑀 ) ) | |
| 15 | 14 3 | elrab2 | ⊢ ( 𝑦 ∈ 𝐿 ↔ ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) ) |
| 16 | 2 | eleq2i | ⊢ ( 𝑦 ∈ 𝐽 ↔ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) |
| 17 | 16 | biimpi | ⊢ ( 𝑦 ∈ 𝐽 → 𝑦 ∈ ( Edg ‘ 𝐻 ) ) |
| 18 | f1ocnvfv2 | ⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) | |
| 19 | 5 17 18 | syl2an | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) |
| 20 | 19 | eqcomd | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽 ) → 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ) |
| 21 | 20 | sseq1d | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽 ) → ( 𝑦 ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 22 | 21 | biimpd | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽 ) → ( 𝑦 ⊆ 𝑀 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 23 | 22 | ex | ⊢ ( 𝐻 ∈ USPGraph → ( 𝑦 ∈ 𝐽 → ( 𝑦 ⊆ 𝑀 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑦 ∈ 𝐽 → ( 𝑦 ⊆ 𝑀 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) ) |
| 25 | 24 | imp32 | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) |
| 26 | 25 | 3adant3 | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) ∧ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) |
| 27 | fveq2 | ⊢ ( ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) | |
| 28 | 27 | sseq1d | ⊢ ( ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
| 29 | 28 | 3ad2ant3 | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) ∧ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
| 30 | 26 29 | mpbid | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) ∧ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) |
| 31 | 30 | 3exp | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀 ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) ) |
| 32 | 15 31 | biimtrid | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑦 ∈ 𝐿 → ( ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) ) |
| 33 | 32 | rexlimdv | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
| 34 | fveqeq2 | ⊢ ( 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ↔ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 ) ) | |
| 35 | f1of | ⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ) | |
| 36 | eqid | ⊢ dom ( iEdg ‘ 𝐻 ) = dom ( iEdg ‘ 𝐻 ) | |
| 37 | 2 | eqcomi | ⊢ ( Edg ‘ 𝐻 ) = 𝐽 |
| 38 | 36 37 | feq23i | ⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ 𝐽 ) |
| 39 | 38 | biimpi | ⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ 𝐽 ) |
| 40 | 5 35 39 | 3syl | ⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ 𝐽 ) |
| 41 | 40 | ffvelcdmda | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐽 ) |
| 42 | 41 | anim1i | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐽 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
| 43 | sseq1 | ⊢ ( 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) → ( 𝑦 ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) | |
| 44 | 14 43 3 | elrab2w | ⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐿 ↔ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐽 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
| 45 | 42 44 | sylibr | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐿 ) |
| 46 | f1ocnvfv1 | ⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 ) | |
| 47 | 5 46 | sylan | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 49 | 34 45 48 | rspcedvdw | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) → ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) |
| 50 | 49 | ex | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 → ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 51 | 33 50 | impbid | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ) ) |
| 52 | 51 | rabbidva | ⊢ ( 𝐻 ∈ USPGraph → { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ∃ 𝑦 ∈ 𝐿 ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) = 𝑥 } = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) |
| 53 | 13 52 | eqtrd | ⊢ ( 𝐻 ∈ USPGraph → ( ◡ ( iEdg ‘ 𝐻 ) “ 𝐿 ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) |