This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for uspgrlim . (Contributed by AV, 16-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrlimlem1.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx 𝑋 ) | |
| uspgrlimlem1.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| uspgrlimlem1.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | uspgrlimlem1 | ⊢ ( 𝐻 ∈ USPGraph → 𝐿 = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrlimlem1.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx 𝑋 ) | |
| 2 | uspgrlimlem1.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 3 | uspgrlimlem1.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 5 | 4 | uspgrf1oedg | ⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 6 | f1of | ⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ) |
| 8 | ssrab2 | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) | |
| 9 | fimarab | ⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ ( Edg ‘ 𝐻 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) = { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 } ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( 𝐻 ∈ USPGraph → ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) = { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 } ) |
| 11 | 2 | eqcomi | ⊢ ( Edg ‘ 𝐻 ) = 𝐽 |
| 12 | 11 | a1i | ⊢ ( 𝐻 ∈ USPGraph → ( Edg ‘ 𝐻 ) = 𝐽 ) |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ) | |
| 14 | 13 | sseq1d | ⊢ ( 𝑥 = 𝑧 → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ) ) |
| 15 | 14 | rexrab | ⊢ ( ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑧 ∈ dom ( iEdg ‘ 𝐻 ) ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) ) |
| 16 | sseq1 | ⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ↔ 𝑦 ⊆ 𝑀 ) ) | |
| 17 | 16 | biimpac | ⊢ ( ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) → 𝑦 ⊆ 𝑀 ) |
| 18 | 17 | a1i | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑧 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) → 𝑦 ⊆ 𝑀 ) ) |
| 19 | f1ocnv | ⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) | |
| 20 | f1of | ⊢ ( ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) | |
| 21 | 5 19 20 | 3syl | ⊢ ( 𝐻 ∈ USPGraph → ◡ ( iEdg ‘ 𝐻 ) : ( Edg ‘ 𝐻 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 22 | 21 | ffvelcdmda | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦 ⊆ 𝑀 ) → ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 24 | f1ocnvfv2 | ⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) | |
| 25 | 5 24 | sylan | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦 ⊆ 𝑀 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) |
| 27 | sseq1 | ⊢ ( 𝑦 = ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) → ( 𝑦 ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) | |
| 28 | 27 | eqcoms | ⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( 𝑦 ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 29 | 28 | biimpcd | ⊢ ( 𝑦 ⊆ 𝑀 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 30 | 29 | adantl | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦 ⊆ 𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 31 | 30 | ancrd | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦 ⊆ 𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) ) ) |
| 32 | 26 31 | mpd | ⊢ ( ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) ∧ 𝑦 ⊆ 𝑀 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) ) |
| 33 | fveq2 | ⊢ ( 𝑧 = ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ) | |
| 34 | 33 | sseq1d | ⊢ ( 𝑧 = ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ) ) |
| 35 | fveqeq2 | ⊢ ( 𝑧 = ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) ) | |
| 36 | 34 35 | anbi12d | ⊢ ( 𝑧 = ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) → ( ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) ↔ ( ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ 𝑦 ) ) = 𝑦 ) ) ) |
| 37 | 18 23 32 36 | rspceb2dv | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ∃ 𝑧 ∈ dom ( iEdg ‘ 𝐻 ) ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) ⊆ 𝑀 ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ) ↔ 𝑦 ⊆ 𝑀 ) ) |
| 38 | 15 37 | bitrid | ⊢ ( ( 𝐻 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐻 ) ) → ( ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 ↔ 𝑦 ⊆ 𝑀 ) ) |
| 39 | 12 38 | rabeqbidva | ⊢ ( 𝐻 ∈ USPGraph → { 𝑦 ∈ ( Edg ‘ 𝐻 ) ∣ ∃ 𝑧 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ( ( iEdg ‘ 𝐻 ) ‘ 𝑧 ) = 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ 𝑀 } ) |
| 40 | sseq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊆ 𝑀 ↔ 𝑥 ⊆ 𝑀 ) ) | |
| 41 | 40 | cbvrabv | ⊢ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ 𝑀 } = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } |
| 42 | 41 | a1i | ⊢ ( 𝐻 ∈ USPGraph → { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ 𝑀 } = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } ) |
| 43 | 10 39 42 | 3eqtrrd | ⊢ ( 𝐻 ∈ USPGraph → { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 44 | 3 43 | eqtrid | ⊢ ( 𝐻 ∈ USPGraph → 𝐿 = ( ( iEdg ‘ 𝐻 ) “ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ 𝑀 } ) ) |