This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for uspgrlim . (Contributed by AV, 16-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrlim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uspgrlim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| uspgrlim.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | ||
| uspgrlim.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | ||
| uspgrlim.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| uspgrlim.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | ||
| uspgrlim.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | ||
| uspgrlim.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | ||
| Assertion | uspgrlimlem4 | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrlim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uspgrlim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | uspgrlim.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | |
| 4 | uspgrlim.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | |
| 5 | uspgrlim.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 6 | uspgrlim.j | ⊢ 𝐽 = ( Edg ‘ 𝐻 ) | |
| 7 | uspgrlim.k | ⊢ 𝐾 = { 𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁 } | |
| 8 | uspgrlim.l | ⊢ 𝐿 = { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } | |
| 9 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 10 | 9 | uspgrf1oedg | ⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 11 | f1of | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ) |
| 14 | simpl | ⊢ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 15 | fvco3 | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) = ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 16 | 15 | fveq2d | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 17 | 13 14 16 | syl2an | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 18 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 19 | 18 | uspgrf1oedg | ⊢ ( 𝐻 ∈ USPGraph → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 20 | 19 | ad3antlr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 21 | ssrab2 | ⊢ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀 } ⊆ 𝐽 | |
| 22 | 6 | eqcomi | ⊢ ( Edg ‘ 𝐻 ) = 𝐽 |
| 23 | 21 8 22 | 3sstr4i | ⊢ 𝐿 ⊆ ( Edg ‘ 𝐻 ) |
| 24 | f1of | ⊢ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → 𝑔 : 𝐾 ⟶ 𝐿 ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 27 | 26 | adantr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 28 | 13 | ffund | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 29 | 9 | iedgedg | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 30 | 28 14 29 | syl2an | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 31 | 30 5 | eleqtrrdi | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐼 ) |
| 32 | simprr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) | |
| 33 | sseq1 | ⊢ ( 𝑥 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( 𝑥 ⊆ 𝑁 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) | |
| 34 | 33 7 | elrab2 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐼 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) |
| 35 | 31 32 34 | sylanbrc | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 ) |
| 36 | 27 35 | ffvelcdmd | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∈ 𝐿 ) |
| 37 | 23 36 | sselid | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 38 | f1ocnvfv2 | ⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 39 | 20 37 38 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 40 | fvco3 | ⊢ ( ( 𝑔 : 𝐾 ⟶ 𝐿 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 ) → ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) | |
| 41 | 40 | fveq2d | ⊢ ( ( 𝑔 : 𝐾 ⟶ 𝐿 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 42 | 27 35 41 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 43 | 5 | eqcomi | ⊢ ( Edg ‘ 𝐺 ) = 𝐼 |
| 44 | feq3 | ⊢ ( ( Edg ‘ 𝐺 ) = 𝐼 → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝐼 ) ) | |
| 45 | 43 44 | ax-mp | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝐼 ) |
| 46 | 45 | biimpi | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( Edg ‘ 𝐺 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝐼 ) |
| 47 | 10 11 46 | 3syl | ⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝐼 ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝐼 ) |
| 49 | 14 | adantl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 50 | 48 49 | ffvelcdmd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐼 ) |
| 51 | simprr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) | |
| 52 | 50 51 34 | sylanbrc | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 ) |
| 53 | imaeq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( 𝑓 “ 𝑒 ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 54 | fveq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( 𝑔 ‘ 𝑒 ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 55 | 53 54 | eqeq12d | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ↔ ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 56 | 55 | rspcv | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐾 → ( ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 57 | 52 56 | syl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 58 | 57 | ex | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 59 | 58 | com23 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 60 | 59 | adantld | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 61 | 60 | imp31 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝑔 ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 62 | 39 42 61 | 3eqtr4d | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 63 | 17 62 | eqtr2d | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) |
| 64 | 63 | ex | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑒 ∈ 𝐾 ( 𝑓 “ 𝑒 ) = ( 𝑔 ‘ 𝑒 ) ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( ( ◡ ( iEdg ‘ 𝐻 ) ∘ 𝑔 ) ∘ ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) ) |