This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrlim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isgrlim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| isgrlim2.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | ||
| isgrlim2.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | ||
| isgrlim2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| isgrlim2.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| isgrlim2.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | ||
| isgrlim2.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | ||
| Assertion | isgrlim2 | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrlim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isgrlim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | isgrlim2.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | |
| 4 | isgrlim2.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | |
| 5 | isgrlim2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 6 | isgrlim2.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 7 | isgrlim2.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | |
| 8 | isgrlim2.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | |
| 9 | 1 2 | isgrlim | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ) ) |
| 10 | 3 | eqcomi | ⊢ ( 𝐺 ClNeighbVtx 𝑣 ) = 𝑁 |
| 11 | 10 | oveq2i | ⊢ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) = ( 𝐺 ISubGr 𝑁 ) |
| 12 | 4 | eqcomi | ⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) = 𝑀 |
| 13 | 12 | oveq2i | ⊢ ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) = ( 𝐻 ISubGr 𝑀 ) |
| 14 | 11 13 | breq12i | ⊢ ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ↔ ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ) |
| 15 | 14 | a1i | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ↔ ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ) ) |
| 16 | 5 6 3 4 7 8 | clnbgrisubgrgrim | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 18 | 15 17 | bitrd | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 19 | 18 | ralbidv | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ↔ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 20 | 19 | anbi2d | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) ) ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| 21 | 9 20 | bitrd | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |