This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun .) (Contributed by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| Assertion | uniiccvol | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 2 | uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 4 | ovolficcss | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
| 6 | ovolcl | ⊢ ( ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ∈ ℝ* ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ∈ ℝ* ) |
| 8 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) | |
| 9 | 8 3 | ovolsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 11 | 10 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 12 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 13 | 11 12 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 14 | supxrcl | ⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 16 | ssid | ⊢ ∪ ran ( [,] ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) | |
| 17 | 3 | ovollb2 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( [,] ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 18 | 1 16 17 | sylancl | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 19 | 1 2 3 | uniioovol | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 20 | ioossicc | ⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ⊆ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 21 | df-ov | ⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) | |
| 22 | df-ov | ⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) | |
| 23 | 20 21 22 | 3sstr3i | ⊢ ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ⊆ ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
| 24 | 23 | a1i | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ⊆ ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ) |
| 25 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 26 | 25 | elin2d | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) ) |
| 27 | 1st2nd2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑥 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
| 29 | 28 | fveq2d | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ) |
| 30 | 28 | fveq2d | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( [,] ‘ ( 𝐹 ‘ 𝑥 ) ) = ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ) |
| 31 | 24 29 30 | 3sstr4d | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( [,] ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 32 | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 33 | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) = ( [,] ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 34 | 31 32 33 | 3sstr4d | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 35 | 1 34 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 36 | 35 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 37 | ss2iun | ⊢ ( ∀ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ ℕ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) ) | |
| 38 | 36 37 | syl | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ ℕ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 39 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 40 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 41 | 39 40 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 42 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 43 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 44 | 42 43 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 45 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) | |
| 46 | 1 44 45 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 47 | fnfco | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) Fn ℕ ) | |
| 48 | 41 46 47 | sylancr | ⊢ ( 𝜑 → ( (,) ∘ 𝐹 ) Fn ℕ ) |
| 49 | fniunfv | ⊢ ( ( (,) ∘ 𝐹 ) Fn ℕ → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( (,) ∘ 𝐹 ) ) | |
| 50 | 48 49 | syl | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 51 | iccf | ⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* | |
| 52 | ffn | ⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → [,] Fn ( ℝ* × ℝ* ) ) | |
| 53 | 51 52 | ax-mp | ⊢ [,] Fn ( ℝ* × ℝ* ) |
| 54 | fnfco | ⊢ ( ( [,] Fn ( ℝ* × ℝ* ) ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( [,] ∘ 𝐹 ) Fn ℕ ) | |
| 55 | 53 46 54 | sylancr | ⊢ ( 𝜑 → ( [,] ∘ 𝐹 ) Fn ℕ ) |
| 56 | fniunfv | ⊢ ( ( [,] ∘ 𝐹 ) Fn ℕ → ∪ 𝑥 ∈ ℕ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( [,] ∘ 𝐹 ) ) | |
| 57 | 55 56 | syl | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ℕ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( [,] ∘ 𝐹 ) ) |
| 58 | 38 50 57 | 3sstr3d | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) |
| 59 | ovolss | ⊢ ( ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ∧ ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ≤ ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ) | |
| 60 | 58 5 59 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ≤ ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ) |
| 61 | 19 60 | eqbrtrrd | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ) |
| 62 | 7 15 18 61 | xrletrid | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |