This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009) (Revised by Stefan O'Rear, 3-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilen | ⊢ ( ω ≼ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑥 ∈ 𝑓 𝑥 ≈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | ⊢ Rel ≼ | |
| 2 | 1 | brrelex2i | ⊢ ( ω ≼ 𝑋 → 𝑋 ∈ V ) |
| 3 | numth3 | ⊢ ( 𝑋 ∈ V → 𝑋 ∈ dom card ) | |
| 4 | 2 3 | syl | ⊢ ( ω ≼ 𝑋 → 𝑋 ∈ dom card ) |
| 5 | csdfil | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) ) | |
| 6 | 4 5 | mpancom | ⊢ ( ω ≼ 𝑋 → { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) ) |
| 7 | filssufil | ⊢ ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 ) | |
| 8 | 6 7 | syl | ⊢ ( ω ≼ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 ) |
| 9 | elfvex | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 10 | 9 | ad2antlr | ⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → 𝑋 ∈ V ) |
| 11 | ufilfil | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) | |
| 12 | filelss | ⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ⊆ 𝑋 ) | |
| 13 | 11 12 | sylan | ⊢ ( ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ⊆ 𝑋 ) |
| 14 | 13 | adantll | ⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ⊆ 𝑋 ) |
| 15 | ssdomg | ⊢ ( 𝑋 ∈ V → ( 𝑥 ⊆ 𝑋 → 𝑥 ≼ 𝑋 ) ) | |
| 16 | 10 14 15 | sylc | ⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ≼ 𝑋 ) |
| 17 | filfbas | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) ) | |
| 18 | 11 17 | syl | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) ) |
| 19 | 18 | adantl | ⊢ ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) ) |
| 20 | fbncp | ⊢ ( ( 𝑓 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ) → ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) | |
| 21 | 19 20 | sylan | ⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) |
| 22 | difeq2 | ⊢ ( 𝑦 = ( 𝑋 ∖ 𝑥 ) → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ) | |
| 23 | 22 | breq1d | ⊢ ( 𝑦 = ( 𝑋 ∖ 𝑥 ) → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ≺ 𝑋 ) ) |
| 24 | difss | ⊢ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 | |
| 25 | elpw2g | ⊢ ( 𝑋 ∈ V → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) ) | |
| 26 | 24 25 | mpbiri | ⊢ ( 𝑋 ∈ V → ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ) |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ) |
| 28 | simp2 | ⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → 𝑥 ⊆ 𝑋 ) | |
| 29 | dfss4 | ⊢ ( 𝑥 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) | |
| 30 | 28 29 | sylib | ⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) |
| 31 | simp3 | ⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → 𝑥 ≺ 𝑋 ) | |
| 32 | 30 31 | eqbrtrd | ⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ≺ 𝑋 ) |
| 33 | 23 27 32 | elrabd | ⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ) |
| 34 | ssel | ⊢ ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ( ( 𝑋 ∖ 𝑥 ) ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } → ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) ) | |
| 35 | 33 34 | syl5com | ⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) ) |
| 36 | 35 | 3expa | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑥 ≺ 𝑋 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) ) |
| 37 | 36 | impancom | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ) ∧ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 ) → ( 𝑥 ≺ 𝑋 → ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) ) |
| 38 | 37 | con3d | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ) ∧ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 ) → ( ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 → ¬ 𝑥 ≺ 𝑋 ) ) |
| 39 | 38 | impancom | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ) ∧ ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ¬ 𝑥 ≺ 𝑋 ) ) |
| 40 | 10 14 21 39 | syl21anc | ⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ¬ 𝑥 ≺ 𝑋 ) ) |
| 41 | bren2 | ⊢ ( 𝑥 ≈ 𝑋 ↔ ( 𝑥 ≼ 𝑋 ∧ ¬ 𝑥 ≺ 𝑋 ) ) | |
| 42 | 41 | simplbi2 | ⊢ ( 𝑥 ≼ 𝑋 → ( ¬ 𝑥 ≺ 𝑋 → 𝑥 ≈ 𝑋 ) ) |
| 43 | 16 40 42 | sylsyld | ⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → 𝑥 ≈ 𝑋 ) ) |
| 44 | 43 | ralrimdva | ⊢ ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ∀ 𝑥 ∈ 𝑓 𝑥 ≈ 𝑋 ) ) |
| 45 | 44 | reximdva | ⊢ ( ω ≼ 𝑋 → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑥 ∈ 𝑓 𝑥 ≈ 𝑋 ) ) |
| 46 | 8 45 | mpd | ⊢ ( ω ≼ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑥 ∈ 𝑓 𝑥 ≈ 𝑋 ) |