This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009) (Revised by Mario Carneiro, 4-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufinffr | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> E. f e. ( UFil ` X ) ( A e. f /\ |^| f = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ominf | |- -. _om e. Fin |
|
| 2 | domfi | |- ( ( A e. Fin /\ _om ~<_ A ) -> _om e. Fin ) |
|
| 3 | 2 | expcom | |- ( _om ~<_ A -> ( A e. Fin -> _om e. Fin ) ) |
| 4 | 1 3 | mtoi | |- ( _om ~<_ A -> -. A e. Fin ) |
| 5 | cfinfil | |- ( ( X e. B /\ A C_ X /\ -. A e. Fin ) -> { x e. ~P X | ( A \ x ) e. Fin } e. ( Fil ` X ) ) |
|
| 6 | 4 5 | syl3an3 | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> { x e. ~P X | ( A \ x ) e. Fin } e. ( Fil ` X ) ) |
| 7 | filssufil | |- ( { x e. ~P X | ( A \ x ) e. Fin } e. ( Fil ` X ) -> E. f e. ( UFil ` X ) { x e. ~P X | ( A \ x ) e. Fin } C_ f ) |
|
| 8 | 6 7 | syl | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> E. f e. ( UFil ` X ) { x e. ~P X | ( A \ x ) e. Fin } C_ f ) |
| 9 | difeq2 | |- ( x = A -> ( A \ x ) = ( A \ A ) ) |
|
| 10 | difid | |- ( A \ A ) = (/) |
|
| 11 | 9 10 | eqtrdi | |- ( x = A -> ( A \ x ) = (/) ) |
| 12 | 11 | eleq1d | |- ( x = A -> ( ( A \ x ) e. Fin <-> (/) e. Fin ) ) |
| 13 | elpw2g | |- ( X e. B -> ( A e. ~P X <-> A C_ X ) ) |
|
| 14 | 13 | biimpar | |- ( ( X e. B /\ A C_ X ) -> A e. ~P X ) |
| 15 | 14 | 3adant3 | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> A e. ~P X ) |
| 16 | 0fi | |- (/) e. Fin |
|
| 17 | 16 | a1i | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> (/) e. Fin ) |
| 18 | 12 15 17 | elrabd | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> A e. { x e. ~P X | ( A \ x ) e. Fin } ) |
| 19 | ssel | |- ( { x e. ~P X | ( A \ x ) e. Fin } C_ f -> ( A e. { x e. ~P X | ( A \ x ) e. Fin } -> A e. f ) ) |
|
| 20 | 18 19 | syl5com | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( { x e. ~P X | ( A \ x ) e. Fin } C_ f -> A e. f ) ) |
| 21 | intss | |- ( { x e. ~P X | ( A \ x ) e. Fin } C_ f -> |^| f C_ |^| { x e. ~P X | ( A \ x ) e. Fin } ) |
|
| 22 | neldifsn | |- -. y e. ( A \ { y } ) |
|
| 23 | elinti | |- ( y e. |^| { x e. ~P X | ( A \ x ) e. Fin } -> ( ( A \ { y } ) e. { x e. ~P X | ( A \ x ) e. Fin } -> y e. ( A \ { y } ) ) ) |
|
| 24 | 22 23 | mtoi | |- ( y e. |^| { x e. ~P X | ( A \ x ) e. Fin } -> -. ( A \ { y } ) e. { x e. ~P X | ( A \ x ) e. Fin } ) |
| 25 | difeq2 | |- ( x = ( A \ { y } ) -> ( A \ x ) = ( A \ ( A \ { y } ) ) ) |
|
| 26 | 25 | eleq1d | |- ( x = ( A \ { y } ) -> ( ( A \ x ) e. Fin <-> ( A \ ( A \ { y } ) ) e. Fin ) ) |
| 27 | simp2 | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> A C_ X ) |
|
| 28 | 27 | ssdifssd | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( A \ { y } ) C_ X ) |
| 29 | elpw2g | |- ( X e. B -> ( ( A \ { y } ) e. ~P X <-> ( A \ { y } ) C_ X ) ) |
|
| 30 | 29 | 3ad2ant1 | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( ( A \ { y } ) e. ~P X <-> ( A \ { y } ) C_ X ) ) |
| 31 | 28 30 | mpbird | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( A \ { y } ) e. ~P X ) |
| 32 | snfi | |- { y } e. Fin |
|
| 33 | eldif | |- ( x e. ( A \ ( A \ { y } ) ) <-> ( x e. A /\ -. x e. ( A \ { y } ) ) ) |
|
| 34 | eldif | |- ( x e. ( A \ { y } ) <-> ( x e. A /\ -. x e. { y } ) ) |
|
| 35 | 34 | notbii | |- ( -. x e. ( A \ { y } ) <-> -. ( x e. A /\ -. x e. { y } ) ) |
| 36 | iman | |- ( ( x e. A -> x e. { y } ) <-> -. ( x e. A /\ -. x e. { y } ) ) |
|
| 37 | 35 36 | bitr4i | |- ( -. x e. ( A \ { y } ) <-> ( x e. A -> x e. { y } ) ) |
| 38 | 37 | anbi2i | |- ( ( x e. A /\ -. x e. ( A \ { y } ) ) <-> ( x e. A /\ ( x e. A -> x e. { y } ) ) ) |
| 39 | 33 38 | bitri | |- ( x e. ( A \ ( A \ { y } ) ) <-> ( x e. A /\ ( x e. A -> x e. { y } ) ) ) |
| 40 | pm3.35 | |- ( ( x e. A /\ ( x e. A -> x e. { y } ) ) -> x e. { y } ) |
|
| 41 | 39 40 | sylbi | |- ( x e. ( A \ ( A \ { y } ) ) -> x e. { y } ) |
| 42 | 41 | ssriv | |- ( A \ ( A \ { y } ) ) C_ { y } |
| 43 | ssfi | |- ( ( { y } e. Fin /\ ( A \ ( A \ { y } ) ) C_ { y } ) -> ( A \ ( A \ { y } ) ) e. Fin ) |
|
| 44 | 32 42 43 | mp2an | |- ( A \ ( A \ { y } ) ) e. Fin |
| 45 | 44 | a1i | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( A \ ( A \ { y } ) ) e. Fin ) |
| 46 | 26 31 45 | elrabd | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( A \ { y } ) e. { x e. ~P X | ( A \ x ) e. Fin } ) |
| 47 | 24 46 | nsyl3 | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> -. y e. |^| { x e. ~P X | ( A \ x ) e. Fin } ) |
| 48 | 47 | eq0rdv | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> |^| { x e. ~P X | ( A \ x ) e. Fin } = (/) ) |
| 49 | 48 | sseq2d | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( |^| f C_ |^| { x e. ~P X | ( A \ x ) e. Fin } <-> |^| f C_ (/) ) ) |
| 50 | 21 49 | imbitrid | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( { x e. ~P X | ( A \ x ) e. Fin } C_ f -> |^| f C_ (/) ) ) |
| 51 | ss0 | |- ( |^| f C_ (/) -> |^| f = (/) ) |
|
| 52 | 50 51 | syl6 | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( { x e. ~P X | ( A \ x ) e. Fin } C_ f -> |^| f = (/) ) ) |
| 53 | 20 52 | jcad | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( { x e. ~P X | ( A \ x ) e. Fin } C_ f -> ( A e. f /\ |^| f = (/) ) ) ) |
| 54 | 53 | reximdv | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> ( E. f e. ( UFil ` X ) { x e. ~P X | ( A \ x ) e. Fin } C_ f -> E. f e. ( UFil ` X ) ( A e. f /\ |^| f = (/) ) ) ) |
| 55 | 8 54 | mpd | |- ( ( X e. B /\ A C_ X /\ _om ~<_ A ) -> E. f e. ( UFil ` X ) ( A e. f /\ |^| f = (/) ) ) |