This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgcn.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| tgcn.3 | ⊢ ( 𝜑 → 𝐾 = ( topGen ‘ 𝐵 ) ) | ||
| tgcn.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| tgcnp.5 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | ||
| Assertion | tgcnp | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcn.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | tgcn.3 | ⊢ ( 𝜑 → 𝐾 = ( topGen ‘ 𝐵 ) ) | |
| 3 | tgcn.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 4 | tgcnp.5 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | |
| 5 | iscnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) | |
| 6 | 1 3 4 5 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 7 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 9 | 2 8 | eqeltrrd | ⊢ ( 𝜑 → ( topGen ‘ 𝐵 ) ∈ Top ) |
| 10 | tgclb | ⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) | |
| 11 | 9 10 | sylibr | ⊢ ( 𝜑 → 𝐵 ∈ TopBases ) |
| 12 | bastg | ⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 14 | 13 2 | sseqtrrd | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐾 ) |
| 15 | ssralv | ⊢ ( 𝐵 ⊆ 𝐾 → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 17 | 16 | anim2d | ⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 18 | 6 17 | sylbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 19 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐾 ↔ 𝑧 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 20 | 19 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐾 ) → 𝑧 ∈ ( topGen ‘ 𝐵 ) ) |
| 21 | tg2 | ⊢ ( ( 𝑧 ∈ ( topGen ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) | |
| 22 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) ) | |
| 23 | sstr | ⊢ ( ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) | |
| 24 | 23 | expcom | ⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
| 25 | 24 | anim2d | ⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 26 | 25 | reximdv | ⊢ ( 𝑦 ⊆ 𝑧 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 27 | 26 | com12 | ⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 28 | 27 | imim2i | ⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ( 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 29 | 28 | imp32 | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
| 30 | 29 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
| 31 | 22 30 | syl | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
| 32 | 31 | expcom | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 33 | 21 32 | syl | ⊢ ( ( 𝑧 ∈ ( topGen ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 34 | 33 | ex | ⊢ ( 𝑧 ∈ ( topGen ‘ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 35 | 34 | com23 | ⊢ ( 𝑧 ∈ ( topGen ‘ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 36 | 20 35 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐾 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 37 | 36 | ralrimdva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 38 | 37 | anim2d | ⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
| 39 | iscnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) | |
| 40 | 1 3 4 39 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
| 41 | 38 40 | sylibrd | ⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ) |
| 42 | 18 41 | impbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |