This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsf1o.b | |- B = ( Base ` G ) |
|
| tsmsf1o.1 | |- ( ph -> G e. CMnd ) |
||
| tsmsf1o.2 | |- ( ph -> G e. TopSp ) |
||
| tsmsf1o.a | |- ( ph -> A e. V ) |
||
| tsmsf1o.f | |- ( ph -> F : A --> B ) |
||
| tsmsf1o.s | |- ( ph -> H : C -1-1-onto-> A ) |
||
| Assertion | tsmsf1o | |- ( ph -> ( G tsums F ) = ( G tsums ( F o. H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsf1o.b | |- B = ( Base ` G ) |
|
| 2 | tsmsf1o.1 | |- ( ph -> G e. CMnd ) |
|
| 3 | tsmsf1o.2 | |- ( ph -> G e. TopSp ) |
|
| 4 | tsmsf1o.a | |- ( ph -> A e. V ) |
|
| 5 | tsmsf1o.f | |- ( ph -> F : A --> B ) |
|
| 6 | tsmsf1o.s | |- ( ph -> H : C -1-1-onto-> A ) |
|
| 7 | f1opwfi | |- ( H : C -1-1-onto-> A -> ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) : ( ~P C i^i Fin ) -1-1-onto-> ( ~P A i^i Fin ) ) |
|
| 8 | 6 7 | syl | |- ( ph -> ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) : ( ~P C i^i Fin ) -1-1-onto-> ( ~P A i^i Fin ) ) |
| 9 | f1of | |- ( ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) : ( ~P C i^i Fin ) -1-1-onto-> ( ~P A i^i Fin ) -> ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) : ( ~P C i^i Fin ) --> ( ~P A i^i Fin ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) : ( ~P C i^i Fin ) --> ( ~P A i^i Fin ) ) |
| 11 | eqid | |- ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) = ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) |
|
| 12 | 11 | fmpt | |- ( A. a e. ( ~P C i^i Fin ) ( H " a ) e. ( ~P A i^i Fin ) <-> ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) : ( ~P C i^i Fin ) --> ( ~P A i^i Fin ) ) |
| 13 | 10 12 | sylibr | |- ( ph -> A. a e. ( ~P C i^i Fin ) ( H " a ) e. ( ~P A i^i Fin ) ) |
| 14 | sseq1 | |- ( y = ( H " a ) -> ( y C_ z <-> ( H " a ) C_ z ) ) |
|
| 15 | 14 | imbi1d | |- ( y = ( H " a ) -> ( ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) ) ) |
| 16 | 15 | ralbidv | |- ( y = ( H " a ) -> ( A. z e. ( ~P A i^i Fin ) ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> A. z e. ( ~P A i^i Fin ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) ) ) |
| 17 | 11 16 | rexrnmptw | |- ( A. a e. ( ~P C i^i Fin ) ( H " a ) e. ( ~P A i^i Fin ) -> ( E. y e. ran ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) A. z e. ( ~P A i^i Fin ) ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> E. a e. ( ~P C i^i Fin ) A. z e. ( ~P A i^i Fin ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) ) ) |
| 18 | 13 17 | syl | |- ( ph -> ( E. y e. ran ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) A. z e. ( ~P A i^i Fin ) ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> E. a e. ( ~P C i^i Fin ) A. z e. ( ~P A i^i Fin ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) ) ) |
| 19 | f1ofo | |- ( ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) : ( ~P C i^i Fin ) -1-1-onto-> ( ~P A i^i Fin ) -> ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) : ( ~P C i^i Fin ) -onto-> ( ~P A i^i Fin ) ) |
|
| 20 | forn | |- ( ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) : ( ~P C i^i Fin ) -onto-> ( ~P A i^i Fin ) -> ran ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) = ( ~P A i^i Fin ) ) |
|
| 21 | 8 19 20 | 3syl | |- ( ph -> ran ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) = ( ~P A i^i Fin ) ) |
| 22 | 21 | rexeqdv | |- ( ph -> ( E. y e. ran ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) A. z e. ( ~P A i^i Fin ) ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> E. y e. ( ~P A i^i Fin ) A. z e. ( ~P A i^i Fin ) ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) ) ) |
| 23 | imaeq2 | |- ( a = b -> ( H " a ) = ( H " b ) ) |
|
| 24 | 23 | cbvmptv | |- ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) = ( b e. ( ~P C i^i Fin ) |-> ( H " b ) ) |
| 25 | 24 | fmpt | |- ( A. b e. ( ~P C i^i Fin ) ( H " b ) e. ( ~P A i^i Fin ) <-> ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) : ( ~P C i^i Fin ) --> ( ~P A i^i Fin ) ) |
| 26 | 10 25 | sylibr | |- ( ph -> A. b e. ( ~P C i^i Fin ) ( H " b ) e. ( ~P A i^i Fin ) ) |
| 27 | sseq2 | |- ( z = ( H " b ) -> ( ( H " a ) C_ z <-> ( H " a ) C_ ( H " b ) ) ) |
|
| 28 | reseq2 | |- ( z = ( H " b ) -> ( F |` z ) = ( F |` ( H " b ) ) ) |
|
| 29 | 28 | oveq2d | |- ( z = ( H " b ) -> ( G gsum ( F |` z ) ) = ( G gsum ( F |` ( H " b ) ) ) ) |
| 30 | 29 | eleq1d | |- ( z = ( H " b ) -> ( ( G gsum ( F |` z ) ) e. u <-> ( G gsum ( F |` ( H " b ) ) ) e. u ) ) |
| 31 | 27 30 | imbi12d | |- ( z = ( H " b ) -> ( ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> ( ( H " a ) C_ ( H " b ) -> ( G gsum ( F |` ( H " b ) ) ) e. u ) ) ) |
| 32 | 24 31 | ralrnmptw | |- ( A. b e. ( ~P C i^i Fin ) ( H " b ) e. ( ~P A i^i Fin ) -> ( A. z e. ran ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> A. b e. ( ~P C i^i Fin ) ( ( H " a ) C_ ( H " b ) -> ( G gsum ( F |` ( H " b ) ) ) e. u ) ) ) |
| 33 | 26 32 | syl | |- ( ph -> ( A. z e. ran ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> A. b e. ( ~P C i^i Fin ) ( ( H " a ) C_ ( H " b ) -> ( G gsum ( F |` ( H " b ) ) ) e. u ) ) ) |
| 34 | 21 | raleqdv | |- ( ph -> ( A. z e. ran ( a e. ( ~P C i^i Fin ) |-> ( H " a ) ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> A. z e. ( ~P A i^i Fin ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) ) ) |
| 35 | 33 34 | bitr3d | |- ( ph -> ( A. b e. ( ~P C i^i Fin ) ( ( H " a ) C_ ( H " b ) -> ( G gsum ( F |` ( H " b ) ) ) e. u ) <-> A. z e. ( ~P A i^i Fin ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) ) ) |
| 36 | 35 | adantr | |- ( ( ph /\ a e. ( ~P C i^i Fin ) ) -> ( A. b e. ( ~P C i^i Fin ) ( ( H " a ) C_ ( H " b ) -> ( G gsum ( F |` ( H " b ) ) ) e. u ) <-> A. z e. ( ~P A i^i Fin ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) ) ) |
| 37 | f1of1 | |- ( H : C -1-1-onto-> A -> H : C -1-1-> A ) |
|
| 38 | 6 37 | syl | |- ( ph -> H : C -1-1-> A ) |
| 39 | 38 | ad2antrr | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> H : C -1-1-> A ) |
| 40 | elfpw | |- ( a e. ( ~P C i^i Fin ) <-> ( a C_ C /\ a e. Fin ) ) |
|
| 41 | 40 | simplbi | |- ( a e. ( ~P C i^i Fin ) -> a C_ C ) |
| 42 | 41 | ad2antlr | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> a C_ C ) |
| 43 | elfpw | |- ( b e. ( ~P C i^i Fin ) <-> ( b C_ C /\ b e. Fin ) ) |
|
| 44 | 43 | simplbi | |- ( b e. ( ~P C i^i Fin ) -> b C_ C ) |
| 45 | 44 | adantl | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> b C_ C ) |
| 46 | f1imass | |- ( ( H : C -1-1-> A /\ ( a C_ C /\ b C_ C ) ) -> ( ( H " a ) C_ ( H " b ) <-> a C_ b ) ) |
|
| 47 | 39 42 45 46 | syl12anc | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( ( H " a ) C_ ( H " b ) <-> a C_ b ) ) |
| 48 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 49 | 2 | ad2antrr | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> G e. CMnd ) |
| 50 | elinel2 | |- ( b e. ( ~P C i^i Fin ) -> b e. Fin ) |
|
| 51 | 50 | adantl | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> b e. Fin ) |
| 52 | f1ores | |- ( ( H : C -1-1-> A /\ b C_ C ) -> ( H |` b ) : b -1-1-onto-> ( H " b ) ) |
|
| 53 | 39 45 52 | syl2anc | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( H |` b ) : b -1-1-onto-> ( H " b ) ) |
| 54 | f1ofo | |- ( ( H |` b ) : b -1-1-onto-> ( H " b ) -> ( H |` b ) : b -onto-> ( H " b ) ) |
|
| 55 | 53 54 | syl | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( H |` b ) : b -onto-> ( H " b ) ) |
| 56 | fofi | |- ( ( b e. Fin /\ ( H |` b ) : b -onto-> ( H " b ) ) -> ( H " b ) e. Fin ) |
|
| 57 | 51 55 56 | syl2anc | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( H " b ) e. Fin ) |
| 58 | 5 | ad2antrr | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> F : A --> B ) |
| 59 | imassrn | |- ( H " b ) C_ ran H |
|
| 60 | 6 | ad2antrr | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> H : C -1-1-onto-> A ) |
| 61 | f1ofo | |- ( H : C -1-1-onto-> A -> H : C -onto-> A ) |
|
| 62 | forn | |- ( H : C -onto-> A -> ran H = A ) |
|
| 63 | 60 61 62 | 3syl | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ran H = A ) |
| 64 | 59 63 | sseqtrid | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( H " b ) C_ A ) |
| 65 | 58 64 | fssresd | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( F |` ( H " b ) ) : ( H " b ) --> B ) |
| 66 | fvexd | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( 0g ` G ) e. _V ) |
|
| 67 | 65 57 66 | fdmfifsupp | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( F |` ( H " b ) ) finSupp ( 0g ` G ) ) |
| 68 | 1 48 49 57 65 67 53 | gsumf1o | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( G gsum ( F |` ( H " b ) ) ) = ( G gsum ( ( F |` ( H " b ) ) o. ( H |` b ) ) ) ) |
| 69 | df-ima | |- ( H " b ) = ran ( H |` b ) |
|
| 70 | 69 | eqimss2i | |- ran ( H |` b ) C_ ( H " b ) |
| 71 | cores | |- ( ran ( H |` b ) C_ ( H " b ) -> ( ( F |` ( H " b ) ) o. ( H |` b ) ) = ( F o. ( H |` b ) ) ) |
|
| 72 | 70 71 | ax-mp | |- ( ( F |` ( H " b ) ) o. ( H |` b ) ) = ( F o. ( H |` b ) ) |
| 73 | resco | |- ( ( F o. H ) |` b ) = ( F o. ( H |` b ) ) |
|
| 74 | 72 73 | eqtr4i | |- ( ( F |` ( H " b ) ) o. ( H |` b ) ) = ( ( F o. H ) |` b ) |
| 75 | 74 | oveq2i | |- ( G gsum ( ( F |` ( H " b ) ) o. ( H |` b ) ) ) = ( G gsum ( ( F o. H ) |` b ) ) |
| 76 | 68 75 | eqtrdi | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( G gsum ( F |` ( H " b ) ) ) = ( G gsum ( ( F o. H ) |` b ) ) ) |
| 77 | 76 | eleq1d | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( ( G gsum ( F |` ( H " b ) ) ) e. u <-> ( G gsum ( ( F o. H ) |` b ) ) e. u ) ) |
| 78 | 47 77 | imbi12d | |- ( ( ( ph /\ a e. ( ~P C i^i Fin ) ) /\ b e. ( ~P C i^i Fin ) ) -> ( ( ( H " a ) C_ ( H " b ) -> ( G gsum ( F |` ( H " b ) ) ) e. u ) <-> ( a C_ b -> ( G gsum ( ( F o. H ) |` b ) ) e. u ) ) ) |
| 79 | 78 | ralbidva | |- ( ( ph /\ a e. ( ~P C i^i Fin ) ) -> ( A. b e. ( ~P C i^i Fin ) ( ( H " a ) C_ ( H " b ) -> ( G gsum ( F |` ( H " b ) ) ) e. u ) <-> A. b e. ( ~P C i^i Fin ) ( a C_ b -> ( G gsum ( ( F o. H ) |` b ) ) e. u ) ) ) |
| 80 | 36 79 | bitr3d | |- ( ( ph /\ a e. ( ~P C i^i Fin ) ) -> ( A. z e. ( ~P A i^i Fin ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> A. b e. ( ~P C i^i Fin ) ( a C_ b -> ( G gsum ( ( F o. H ) |` b ) ) e. u ) ) ) |
| 81 | 80 | rexbidva | |- ( ph -> ( E. a e. ( ~P C i^i Fin ) A. z e. ( ~P A i^i Fin ) ( ( H " a ) C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> E. a e. ( ~P C i^i Fin ) A. b e. ( ~P C i^i Fin ) ( a C_ b -> ( G gsum ( ( F o. H ) |` b ) ) e. u ) ) ) |
| 82 | 18 22 81 | 3bitr3d | |- ( ph -> ( E. y e. ( ~P A i^i Fin ) A. z e. ( ~P A i^i Fin ) ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) <-> E. a e. ( ~P C i^i Fin ) A. b e. ( ~P C i^i Fin ) ( a C_ b -> ( G gsum ( ( F o. H ) |` b ) ) e. u ) ) ) |
| 83 | 82 | imbi2d | |- ( ph -> ( ( x e. u -> E. y e. ( ~P A i^i Fin ) A. z e. ( ~P A i^i Fin ) ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) ) <-> ( x e. u -> E. a e. ( ~P C i^i Fin ) A. b e. ( ~P C i^i Fin ) ( a C_ b -> ( G gsum ( ( F o. H ) |` b ) ) e. u ) ) ) ) |
| 84 | 83 | ralbidv | |- ( ph -> ( A. u e. ( TopOpen ` G ) ( x e. u -> E. y e. ( ~P A i^i Fin ) A. z e. ( ~P A i^i Fin ) ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) ) <-> A. u e. ( TopOpen ` G ) ( x e. u -> E. a e. ( ~P C i^i Fin ) A. b e. ( ~P C i^i Fin ) ( a C_ b -> ( G gsum ( ( F o. H ) |` b ) ) e. u ) ) ) ) |
| 85 | 84 | anbi2d | |- ( ph -> ( ( x e. B /\ A. u e. ( TopOpen ` G ) ( x e. u -> E. y e. ( ~P A i^i Fin ) A. z e. ( ~P A i^i Fin ) ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) ) ) <-> ( x e. B /\ A. u e. ( TopOpen ` G ) ( x e. u -> E. a e. ( ~P C i^i Fin ) A. b e. ( ~P C i^i Fin ) ( a C_ b -> ( G gsum ( ( F o. H ) |` b ) ) e. u ) ) ) ) ) |
| 86 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 87 | eqid | |- ( ~P A i^i Fin ) = ( ~P A i^i Fin ) |
|
| 88 | 1 86 87 2 3 4 5 | eltsms | |- ( ph -> ( x e. ( G tsums F ) <-> ( x e. B /\ A. u e. ( TopOpen ` G ) ( x e. u -> E. y e. ( ~P A i^i Fin ) A. z e. ( ~P A i^i Fin ) ( y C_ z -> ( G gsum ( F |` z ) ) e. u ) ) ) ) ) |
| 89 | eqid | |- ( ~P C i^i Fin ) = ( ~P C i^i Fin ) |
|
| 90 | f1dmex | |- ( ( H : C -1-1-> A /\ A e. V ) -> C e. _V ) |
|
| 91 | 38 4 90 | syl2anc | |- ( ph -> C e. _V ) |
| 92 | f1of | |- ( H : C -1-1-onto-> A -> H : C --> A ) |
|
| 93 | 6 92 | syl | |- ( ph -> H : C --> A ) |
| 94 | fco | |- ( ( F : A --> B /\ H : C --> A ) -> ( F o. H ) : C --> B ) |
|
| 95 | 5 93 94 | syl2anc | |- ( ph -> ( F o. H ) : C --> B ) |
| 96 | 1 86 89 2 3 91 95 | eltsms | |- ( ph -> ( x e. ( G tsums ( F o. H ) ) <-> ( x e. B /\ A. u e. ( TopOpen ` G ) ( x e. u -> E. a e. ( ~P C i^i Fin ) A. b e. ( ~P C i^i Fin ) ( a C_ b -> ( G gsum ( ( F o. H ) |` b ) ) e. u ) ) ) ) ) |
| 97 | 85 88 96 | 3bitr4d | |- ( ph -> ( x e. ( G tsums F ) <-> x e. ( G tsums ( F o. H ) ) ) ) |
| 98 | 97 | eqrdv | |- ( ph -> ( G tsums F ) = ( G tsums ( F o. H ) ) ) |