This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there exists a unique functor from both the category itself and the trivial category, then the category is terminal. Note that the converse also holds, so that it is a biconditional. See the proof of termc for hints. See also eufunc and euendfunc2 for some insights on why two categories are sufficient. (Contributed by Zhi Wang, 18-Oct-2025) (Proof shortened by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | termc2 | ⊢ ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → 𝐶 ∈ TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) = ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) | |
| 2 | fvex | ⊢ ( SetCat ‘ 1o ) ∈ V | |
| 3 | 2 | prid2 | ⊢ ( SetCat ‘ 1o ) ∈ { 𝐶 , ( SetCat ‘ 1o ) } |
| 4 | setc1oterm | ⊢ ( SetCat ‘ 1o ) ∈ TermCat | |
| 5 | 3 4 | elini | ⊢ ( SetCat ‘ 1o ) ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ TermCat ) |
| 6 | 5 | ne0ii | ⊢ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ TermCat ) ≠ ∅ |
| 7 | 6 | a1i | ⊢ ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ TermCat ) ≠ ∅ ) |
| 8 | 4 | a1i | ⊢ ( ⊤ → ( SetCat ‘ 1o ) ∈ TermCat ) |
| 9 | 8 | termccd | ⊢ ( ⊤ → ( SetCat ‘ 1o ) ∈ Cat ) |
| 10 | 9 | mptru | ⊢ ( SetCat ‘ 1o ) ∈ Cat |
| 11 | 3 10 | elini | ⊢ ( SetCat ‘ 1o ) ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) |
| 12 | oveq1 | ⊢ ( 𝑑 = ( SetCat ‘ 1o ) → ( 𝑑 Func 𝐶 ) = ( ( SetCat ‘ 1o ) Func 𝐶 ) ) | |
| 13 | 12 | eleq2d | ⊢ ( 𝑑 = ( SetCat ‘ 1o ) → ( 𝑓 ∈ ( 𝑑 Func 𝐶 ) ↔ 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) ) ) |
| 14 | 13 | eubidv | ⊢ ( 𝑑 = ( SetCat ‘ 1o ) → ( ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ↔ ∃! 𝑓 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) ) ) |
| 15 | 14 | rspcv | ⊢ ( ( SetCat ‘ 1o ) ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) → ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → ∃! 𝑓 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) ) ) |
| 16 | 11 15 | ax-mp | ⊢ ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → ∃! 𝑓 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) ) |
| 17 | euen1b | ⊢ ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o ↔ ∃! 𝑓 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o ) |
| 19 | eqid | ⊢ ( Base ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) = ( Base ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) | |
| 20 | prex | ⊢ { 𝐶 , ( SetCat ‘ 1o ) } ∈ V | |
| 21 | 20 | a1i | ⊢ ( ⊤ → { 𝐶 , ( SetCat ‘ 1o ) } ∈ V ) |
| 22 | 1 19 21 | catcbas | ⊢ ( ⊤ → ( Base ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) = ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ) |
| 23 | 22 | mptru | ⊢ ( Base ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) = ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) |
| 24 | 23 | eqcomi | ⊢ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) = ( Base ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) |
| 25 | eqid | ⊢ ( Hom ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) = ( Hom ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) | |
| 26 | 1 | catccat | ⊢ ( { 𝐶 , ( SetCat ‘ 1o ) } ∈ V → ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ∈ Cat ) |
| 27 | 20 26 | ax-mp | ⊢ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ∈ Cat |
| 28 | 27 | a1i | ⊢ ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o → ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ∈ Cat ) |
| 29 | euex | ⊢ ( ∃! 𝑓 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) → ∃ 𝑓 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) ) | |
| 30 | funcrcl | ⊢ ( 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) → ( ( SetCat ‘ 1o ) ∈ Cat ∧ 𝐶 ∈ Cat ) ) | |
| 31 | 30 | simprd | ⊢ ( 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) → 𝐶 ∈ Cat ) |
| 32 | 31 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) → 𝐶 ∈ Cat ) |
| 33 | 29 32 | syl | ⊢ ( ∃! 𝑓 𝑓 ∈ ( ( SetCat ‘ 1o ) Func 𝐶 ) → 𝐶 ∈ Cat ) |
| 34 | 17 33 | sylbi | ⊢ ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o → 𝐶 ∈ Cat ) |
| 35 | prid1g | ⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ { 𝐶 , ( SetCat ‘ 1o ) } ) | |
| 36 | 34 35 | syl | ⊢ ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o → 𝐶 ∈ { 𝐶 , ( SetCat ‘ 1o ) } ) |
| 37 | 36 34 | elind | ⊢ ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o → 𝐶 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ) |
| 38 | 24 25 28 37 | istermo | ⊢ ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o → ( 𝐶 ∈ ( TermO ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) ↔ ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 ( Hom ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) 𝐶 ) ) ) |
| 39 | 20 | a1i | ⊢ ( ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o ∧ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ) → { 𝐶 , ( SetCat ‘ 1o ) } ∈ V ) |
| 40 | simpr | ⊢ ( ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o ∧ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ) → 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ) | |
| 41 | 37 | adantr | ⊢ ( ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o ∧ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ) → 𝐶 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ) |
| 42 | 1 24 39 25 40 41 | catchom | ⊢ ( ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o ∧ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ) → ( 𝑑 ( Hom ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) 𝐶 ) = ( 𝑑 Func 𝐶 ) ) |
| 43 | 42 | eleq2d | ⊢ ( ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o ∧ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ) → ( 𝑓 ∈ ( 𝑑 ( Hom ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) 𝐶 ) ↔ 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) ) |
| 44 | 43 | eubidv | ⊢ ( ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o ∧ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ) → ( ∃! 𝑓 𝑓 ∈ ( 𝑑 ( Hom ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) 𝐶 ) ↔ ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) ) |
| 45 | 44 | ralbidva | ⊢ ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o → ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 ( Hom ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) 𝐶 ) ↔ ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) ) |
| 46 | 38 45 | bitrd | ⊢ ( ( ( SetCat ‘ 1o ) Func 𝐶 ) ≈ 1o → ( 𝐶 ∈ ( TermO ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) ↔ ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) ) |
| 47 | 18 46 | syl | ⊢ ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → ( 𝐶 ∈ ( TermO ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) ↔ ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) ) |
| 48 | 47 | ibir | ⊢ ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → 𝐶 ∈ ( TermO ‘ ( CatCat ‘ { 𝐶 , ( SetCat ‘ 1o ) } ) ) ) |
| 49 | 1 7 48 | termcterm2 | ⊢ ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → 𝐶 ∈ TermCat ) |