This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A terminal object of the category of small categories is a terminal category. (Contributed by Zhi Wang, 18-Oct-2025) (Proof shortened by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcterm.e | ⊢ 𝐸 = ( CatCat ‘ 𝑈 ) | |
| termcterm2. | ⊢ ( 𝜑 → ( 𝑈 ∩ TermCat ) ≠ ∅ ) | ||
| termcterm2.t | ⊢ ( 𝜑 → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) | ||
| Assertion | termcterm2 | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcterm.e | ⊢ 𝐸 = ( CatCat ‘ 𝑈 ) | |
| 2 | termcterm2. | ⊢ ( 𝜑 → ( 𝑈 ∩ TermCat ) ≠ ∅ ) | |
| 3 | termcterm2.t | ⊢ ( 𝜑 → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) | |
| 4 | n0 | ⊢ ( ( 𝑈 ∩ TermCat ) ≠ ∅ ↔ ∃ 𝑑 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) | |
| 5 | 2 4 | sylib | ⊢ ( 𝜑 → ∃ 𝑑 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) | |
| 7 | 6 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ TermCat ) |
| 8 | 7 | termcthind | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ ThinCat ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐶 ∈ ( TermO ‘ 𝐸 ) ) |
| 11 | 9 | termoo2 | ⊢ ( 𝐶 ∈ ( TermO ‘ 𝐸 ) → 𝐶 ∈ ( Base ‘ 𝐸 ) ) |
| 12 | 10 11 | syl | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐶 ∈ ( Base ‘ 𝐸 ) ) |
| 13 | 1 9 | elbasfv | ⊢ ( 𝐶 ∈ ( Base ‘ 𝐸 ) → 𝑈 ∈ V ) |
| 14 | 12 13 | syl | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑈 ∈ V ) |
| 15 | 6 | elin1d | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ 𝑈 ) |
| 16 | 7 | termccd | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ Cat ) |
| 17 | 15 16 | elind | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ ( 𝑈 ∩ Cat ) ) |
| 18 | 1 9 14 | catcbas | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) ) |
| 19 | 17 18 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ ( Base ‘ 𝐸 ) ) |
| 20 | termorcl | ⊢ ( 𝐶 ∈ ( TermO ‘ 𝐸 ) → 𝐸 ∈ Cat ) | |
| 21 | 10 20 | syl | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐸 ∈ Cat ) |
| 22 | 1 14 15 7 | termcterm | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝑑 ∈ ( TermO ‘ 𝐸 ) ) |
| 23 | 21 10 22 | termoeu1w | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐶 ( ≃𝑐 ‘ 𝐸 ) 𝑑 ) |
| 24 | 1 9 14 12 19 23 | thincciso4 | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( 𝐶 ∈ ThinCat ↔ 𝑑 ∈ ThinCat ) ) |
| 25 | 8 24 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐶 ∈ ThinCat ) |
| 26 | 21 10 22 | termoeu1 | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ) |
| 27 | euex | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ) |
| 29 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 30 | eqid | ⊢ ( Base ‘ 𝑑 ) = ( Base ‘ 𝑑 ) | |
| 31 | eqid | ⊢ ( Iso ‘ 𝐸 ) = ( Iso ‘ 𝐸 ) | |
| 32 | 1 9 29 30 14 12 19 31 | catciso | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ↔ ( 𝑓 ∈ ( ( 𝐶 Full 𝑑 ) ∩ ( 𝐶 Faith 𝑑 ) ) ∧ ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝑑 ) ) ) ) |
| 33 | 32 | simplbda | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) ∧ 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ) → ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝑑 ) ) |
| 34 | fvex | ⊢ ( Base ‘ 𝐶 ) ∈ V | |
| 35 | 34 | f1oen | ⊢ ( ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝑑 ) → ( Base ‘ 𝐶 ) ≈ ( Base ‘ 𝑑 ) ) |
| 36 | 33 35 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) ∧ 𝑓 ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑑 ) ) → ( Base ‘ 𝐶 ) ≈ ( Base ‘ 𝑑 ) ) |
| 37 | 28 36 | exlimddv | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( Base ‘ 𝐶 ) ≈ ( Base ‘ 𝑑 ) ) |
| 38 | 30 | istermc3 | ⊢ ( 𝑑 ∈ TermCat ↔ ( 𝑑 ∈ ThinCat ∧ ( Base ‘ 𝑑 ) ≈ 1o ) ) |
| 39 | 7 38 | sylib | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( 𝑑 ∈ ThinCat ∧ ( Base ‘ 𝑑 ) ≈ 1o ) ) |
| 40 | 39 | simprd | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( Base ‘ 𝑑 ) ≈ 1o ) |
| 41 | entr | ⊢ ( ( ( Base ‘ 𝐶 ) ≈ ( Base ‘ 𝑑 ) ∧ ( Base ‘ 𝑑 ) ≈ 1o ) → ( Base ‘ 𝐶 ) ≈ 1o ) | |
| 42 | 37 40 41 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → ( Base ‘ 𝐶 ) ≈ 1o ) |
| 43 | 29 | istermc3 | ⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ( Base ‘ 𝐶 ) ≈ 1o ) ) |
| 44 | 25 42 43 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝑈 ∩ TermCat ) ) → 𝐶 ∈ TermCat ) |
| 45 | 5 44 | exlimddv | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |