This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of TermCat . See also df-termc . (Contributed by Zhi Wang, 18-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | termc | ⊢ ( 𝐶 ∈ TermCat ↔ ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐶 ∈ TermCat ∧ 𝑑 ∈ Cat ) → 𝑑 ∈ Cat ) | |
| 2 | simpl | ⊢ ( ( 𝐶 ∈ TermCat ∧ 𝑑 ∈ Cat ) → 𝐶 ∈ TermCat ) | |
| 3 | 1 2 | functermceu | ⊢ ( ( 𝐶 ∈ TermCat ∧ 𝑑 ∈ Cat ) → ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) |
| 4 | 3 | ralrimiva | ⊢ ( 𝐶 ∈ TermCat → ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) |
| 5 | inss2 | ⊢ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ⊆ Cat | |
| 6 | ssralv | ⊢ ( ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ⊆ Cat → ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) |
| 8 | termc2 | ⊢ ( ∀ 𝑑 ∈ ( { 𝐶 , ( SetCat ‘ 1o ) } ∩ Cat ) ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → 𝐶 ∈ TermCat ) | |
| 9 | 7 8 | syl | ⊢ ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) → 𝐶 ∈ TermCat ) |
| 10 | 4 9 | impbii | ⊢ ( 𝐶 ∈ TermCat ↔ ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝑑 Func 𝐶 ) ) |