This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there exists a unique endofunctor (a functor from a category to itself) for a category, then it is either initial (empty) or terminal. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euendfunc2 | ⊢ ( ( 𝐶 Func 𝐶 ) ≈ 1o → ( ( Base ‘ 𝐶 ) = ∅ ∨ 𝐶 ∈ TermCat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euen1b | ⊢ ( ( 𝐶 Func 𝐶 ) ≈ 1o ↔ ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) | |
| 2 | 1 | biimpi | ⊢ ( ( 𝐶 Func 𝐶 ) ≈ 1o → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐶 Func 𝐶 ) ≈ 1o ∧ ¬ ( Base ‘ 𝐶 ) = ∅ ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | simpr | ⊢ ( ( ( 𝐶 Func 𝐶 ) ≈ 1o ∧ ¬ ( Base ‘ 𝐶 ) = ∅ ) → ¬ ( Base ‘ 𝐶 ) = ∅ ) | |
| 6 | 5 | neqned | ⊢ ( ( ( 𝐶 Func 𝐶 ) ≈ 1o ∧ ¬ ( Base ‘ 𝐶 ) = ∅ ) → ( Base ‘ 𝐶 ) ≠ ∅ ) |
| 7 | 3 4 6 | euendfunc | ⊢ ( ( ( 𝐶 Func 𝐶 ) ≈ 1o ∧ ¬ ( Base ‘ 𝐶 ) = ∅ ) → 𝐶 ∈ TermCat ) |
| 8 | 7 | ex | ⊢ ( ( 𝐶 Func 𝐶 ) ≈ 1o → ( ¬ ( Base ‘ 𝐶 ) = ∅ → 𝐶 ∈ TermCat ) ) |
| 9 | 8 | orrd | ⊢ ( ( 𝐶 Func 𝐶 ) ≈ 1o → ( ( Base ‘ 𝐶 ) = ∅ ∨ 𝐶 ∈ TermCat ) ) |