This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there exists a unique functor from both the category itself and the trivial category, then the category is terminal. Note that the converse also holds, so that it is a biconditional. See the proof of termc for hints. See also eufunc and euendfunc2 for some insights on why two categories are sufficient. (Contributed by Zhi Wang, 18-Oct-2025) (Proof shortened by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | termc2 | |- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> C e. TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( CatCat ` { C , ( SetCat ` 1o ) } ) = ( CatCat ` { C , ( SetCat ` 1o ) } ) |
|
| 2 | fvex | |- ( SetCat ` 1o ) e. _V |
|
| 3 | 2 | prid2 | |- ( SetCat ` 1o ) e. { C , ( SetCat ` 1o ) } |
| 4 | setc1oterm | |- ( SetCat ` 1o ) e. TermCat |
|
| 5 | 3 4 | elini | |- ( SetCat ` 1o ) e. ( { C , ( SetCat ` 1o ) } i^i TermCat ) |
| 6 | 5 | ne0ii | |- ( { C , ( SetCat ` 1o ) } i^i TermCat ) =/= (/) |
| 7 | 6 | a1i | |- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> ( { C , ( SetCat ` 1o ) } i^i TermCat ) =/= (/) ) |
| 8 | 4 | a1i | |- ( T. -> ( SetCat ` 1o ) e. TermCat ) |
| 9 | 8 | termccd | |- ( T. -> ( SetCat ` 1o ) e. Cat ) |
| 10 | 9 | mptru | |- ( SetCat ` 1o ) e. Cat |
| 11 | 3 10 | elini | |- ( SetCat ` 1o ) e. ( { C , ( SetCat ` 1o ) } i^i Cat ) |
| 12 | oveq1 | |- ( d = ( SetCat ` 1o ) -> ( d Func C ) = ( ( SetCat ` 1o ) Func C ) ) |
|
| 13 | 12 | eleq2d | |- ( d = ( SetCat ` 1o ) -> ( f e. ( d Func C ) <-> f e. ( ( SetCat ` 1o ) Func C ) ) ) |
| 14 | 13 | eubidv | |- ( d = ( SetCat ` 1o ) -> ( E! f f e. ( d Func C ) <-> E! f f e. ( ( SetCat ` 1o ) Func C ) ) ) |
| 15 | 14 | rspcv | |- ( ( SetCat ` 1o ) e. ( { C , ( SetCat ` 1o ) } i^i Cat ) -> ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> E! f f e. ( ( SetCat ` 1o ) Func C ) ) ) |
| 16 | 11 15 | ax-mp | |- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> E! f f e. ( ( SetCat ` 1o ) Func C ) ) |
| 17 | euen1b | |- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o <-> E! f f e. ( ( SetCat ` 1o ) Func C ) ) |
|
| 18 | 16 17 | sylibr | |- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> ( ( SetCat ` 1o ) Func C ) ~~ 1o ) |
| 19 | eqid | |- ( Base ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) = ( Base ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) |
|
| 20 | prex | |- { C , ( SetCat ` 1o ) } e. _V |
|
| 21 | 20 | a1i | |- ( T. -> { C , ( SetCat ` 1o ) } e. _V ) |
| 22 | 1 19 21 | catcbas | |- ( T. -> ( Base ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) = ( { C , ( SetCat ` 1o ) } i^i Cat ) ) |
| 23 | 22 | mptru | |- ( Base ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) = ( { C , ( SetCat ` 1o ) } i^i Cat ) |
| 24 | 23 | eqcomi | |- ( { C , ( SetCat ` 1o ) } i^i Cat ) = ( Base ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) |
| 25 | eqid | |- ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) = ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) |
|
| 26 | 1 | catccat | |- ( { C , ( SetCat ` 1o ) } e. _V -> ( CatCat ` { C , ( SetCat ` 1o ) } ) e. Cat ) |
| 27 | 20 26 | ax-mp | |- ( CatCat ` { C , ( SetCat ` 1o ) } ) e. Cat |
| 28 | 27 | a1i | |- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> ( CatCat ` { C , ( SetCat ` 1o ) } ) e. Cat ) |
| 29 | euex | |- ( E! f f e. ( ( SetCat ` 1o ) Func C ) -> E. f f e. ( ( SetCat ` 1o ) Func C ) ) |
|
| 30 | funcrcl | |- ( f e. ( ( SetCat ` 1o ) Func C ) -> ( ( SetCat ` 1o ) e. Cat /\ C e. Cat ) ) |
|
| 31 | 30 | simprd | |- ( f e. ( ( SetCat ` 1o ) Func C ) -> C e. Cat ) |
| 32 | 31 | exlimiv | |- ( E. f f e. ( ( SetCat ` 1o ) Func C ) -> C e. Cat ) |
| 33 | 29 32 | syl | |- ( E! f f e. ( ( SetCat ` 1o ) Func C ) -> C e. Cat ) |
| 34 | 17 33 | sylbi | |- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> C e. Cat ) |
| 35 | prid1g | |- ( C e. Cat -> C e. { C , ( SetCat ` 1o ) } ) |
|
| 36 | 34 35 | syl | |- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> C e. { C , ( SetCat ` 1o ) } ) |
| 37 | 36 34 | elind | |- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> C e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) |
| 38 | 24 25 28 37 | istermo | |- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> ( C e. ( TermO ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) <-> A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) C ) ) ) |
| 39 | 20 | a1i | |- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> { C , ( SetCat ` 1o ) } e. _V ) |
| 40 | simpr | |- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) |
|
| 41 | 37 | adantr | |- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> C e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) |
| 42 | 1 24 39 25 40 41 | catchom | |- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> ( d ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) C ) = ( d Func C ) ) |
| 43 | 42 | eleq2d | |- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> ( f e. ( d ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) C ) <-> f e. ( d Func C ) ) ) |
| 44 | 43 | eubidv | |- ( ( ( ( SetCat ` 1o ) Func C ) ~~ 1o /\ d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) ) -> ( E! f f e. ( d ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) C ) <-> E! f f e. ( d Func C ) ) ) |
| 45 | 44 | ralbidva | |- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d ( Hom ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) C ) <-> A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) ) ) |
| 46 | 38 45 | bitrd | |- ( ( ( SetCat ` 1o ) Func C ) ~~ 1o -> ( C e. ( TermO ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) <-> A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) ) ) |
| 47 | 18 46 | syl | |- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> ( C e. ( TermO ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) <-> A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) ) ) |
| 48 | 47 | ibir | |- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> C e. ( TermO ` ( CatCat ` { C , ( SetCat ` 1o ) } ) ) ) |
| 49 | 1 7 48 | termcterm2 | |- ( A. d e. ( { C , ( SetCat ` 1o ) } i^i Cat ) E! f f e. ( d Func C ) -> C e. TermCat ) |