This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there exists a unique functor from a non-empty category, then the base of the target category is a singleton. (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufunc.f | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| eufunc.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| eufunc.0 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| eufunc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| Assertion | eufunc | ⊢ ( 𝜑 → ∃! 𝑥 𝑥 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufunc.f | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 2 | eufunc.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | eufunc.0 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 4 | eufunc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 5 | euex | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 6 | simpr | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) | |
| 7 | simpl | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐵 = ∅ ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 8 | 2 4 6 7 | func0g2 | ⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐵 = ∅ ) → 𝐴 = ∅ ) |
| 9 | 8 | ex | ⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |
| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |
| 11 | 1 5 10 | 3syl | ⊢ ( 𝜑 → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝜑 ∧ 𝐵 = ∅ ) → 𝐴 = ∅ ) |
| 13 | 3 12 | mteqand | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 14 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) | |
| 15 | 13 14 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐵 ) |
| 16 | 1 2 3 4 | eufunclem | ⊢ ( 𝜑 → 𝐵 ≼ 1o ) |
| 17 | modom2 | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 ↔ 𝐵 ≼ 1o ) | |
| 18 | 16 17 | sylibr | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
| 19 | df-eu | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐵 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐵 ∧ ∃* 𝑥 𝑥 ∈ 𝐵 ) ) | |
| 20 | 15 18 19 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑥 𝑥 ∈ 𝐵 ) |