This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for supmul . (Contributed by Mario Carneiro, 5-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmul.1 | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) } | |
| supmul.2 | ⊢ ( 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) | ||
| Assertion | supmullem2 | ⊢ ( 𝜑 → ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmul.1 | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) } | |
| 2 | supmul.2 | ⊢ ( 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) | |
| 3 | vex | ⊢ 𝑤 ∈ V | |
| 4 | oveq1 | ⊢ ( 𝑣 = 𝑎 → ( 𝑣 · 𝑏 ) = ( 𝑎 · 𝑏 ) ) | |
| 5 | 4 | eqeq2d | ⊢ ( 𝑣 = 𝑎 → ( 𝑧 = ( 𝑣 · 𝑏 ) ↔ 𝑧 = ( 𝑎 · 𝑏 ) ) ) |
| 6 | 5 | rexbidv | ⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) ) |
| 7 | 6 | cbvrexvw | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ) |
| 8 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 · 𝑏 ) ↔ 𝑤 = ( 𝑎 · 𝑏 ) ) ) | |
| 9 | 8 | 2rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
| 10 | 7 9 | bitrid | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) ) |
| 11 | 3 10 1 | elab2 | ⊢ ( 𝑤 ∈ 𝐶 ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 12 | 2 | simp2bi | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 13 | 12 | simp1d | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 14 | 13 | sseld | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
| 15 | 2 | simp3bi | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) |
| 16 | 15 | simp1d | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
| 17 | 16 | sseld | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ ℝ ) ) |
| 18 | 14 17 | anim12d | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ) |
| 19 | remulcl | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) | |
| 20 | 18 19 | syl6 | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) ) |
| 21 | eleq1a | ⊢ ( ( 𝑎 · 𝑏 ) ∈ ℝ → ( 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ∈ ℝ ) ) | |
| 22 | 20 21 | syl6 | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ∈ ℝ ) ) ) |
| 23 | 22 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) → 𝑤 ∈ ℝ ) ) |
| 24 | 11 23 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ∈ ℝ ) ) |
| 25 | 24 | ssrdv | ⊢ ( 𝜑 → 𝐶 ⊆ ℝ ) |
| 26 | 12 | simp2d | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 27 | 15 | simp2d | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 28 | ovex | ⊢ ( 𝑎 · 𝑏 ) ∈ V | |
| 29 | 28 | isseti | ⊢ ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) |
| 30 | 29 | rgenw | ⊢ ∀ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) |
| 31 | r19.2z | ⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ) | |
| 32 | 27 30 31 | sylancl | ⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 33 | rexcom4 | ⊢ ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) | |
| 34 | 32 33 | sylib | ⊢ ( 𝜑 → ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 35 | 34 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 36 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) | |
| 37 | 26 35 36 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 38 | rexcom4 | ⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) | |
| 39 | 37 38 | sylib | ⊢ ( 𝜑 → ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 40 | n0 | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) | |
| 41 | 11 | exbii | ⊢ ( ∃ 𝑤 𝑤 ∈ 𝐶 ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 42 | 40 41 | bitri | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 · 𝑏 ) ) |
| 43 | 39 42 | sylibr | ⊢ ( 𝜑 → 𝐶 ≠ ∅ ) |
| 44 | suprcl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 45 | 12 44 | syl | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 46 | suprcl | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) | |
| 47 | 15 46 | syl | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 48 | 45 47 | remulcld | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ) |
| 49 | 1 2 | supmullem1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) |
| 50 | brralrspcev | ⊢ ( ( ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ∧ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) · sup ( 𝐵 , ℝ , < ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) | |
| 51 | 48 49 50 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) |
| 52 | 25 43 51 | 3jca | ⊢ ( 𝜑 → ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ) |