This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum function distributes over multiplication, in the sense that ( sup A ) x. ( sup B ) = sup ( A x. B ) , where A x. B is shorthand for { a x. b | a e. A , b e. B } and is defined as C below. We made use of this in our definition of multiplication in the Dedekind cut construction of the reals (see df-mp ). (Contributed by Mario Carneiro, 5-Jul-2013) (Revised by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmul.1 | |- C = { z | E. v e. A E. b e. B z = ( v x. b ) } |
|
| supmul.2 | |- ( ph <-> ( ( A. x e. A 0 <_ x /\ A. x e. B 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) ) |
||
| Assertion | supmul | |- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = sup ( C , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmul.1 | |- C = { z | E. v e. A E. b e. B z = ( v x. b ) } |
|
| 2 | supmul.2 | |- ( ph <-> ( ( A. x e. A 0 <_ x /\ A. x e. B 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) ) |
|
| 3 | 2 | simp2bi | |- ( ph -> ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) |
| 4 | suprcl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |
|
| 5 | 3 4 | syl | |- ( ph -> sup ( A , RR , < ) e. RR ) |
| 6 | 2 | simp3bi | |- ( ph -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
| 7 | suprcl | |- ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) -> sup ( B , RR , < ) e. RR ) |
|
| 8 | 6 7 | syl | |- ( ph -> sup ( B , RR , < ) e. RR ) |
| 9 | recn | |- ( sup ( A , RR , < ) e. RR -> sup ( A , RR , < ) e. CC ) |
|
| 10 | recn | |- ( sup ( B , RR , < ) e. RR -> sup ( B , RR , < ) e. CC ) |
|
| 11 | mulcom | |- ( ( sup ( A , RR , < ) e. CC /\ sup ( B , RR , < ) e. CC ) -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = ( sup ( B , RR , < ) x. sup ( A , RR , < ) ) ) |
|
| 12 | 9 10 11 | syl2an | |- ( ( sup ( A , RR , < ) e. RR /\ sup ( B , RR , < ) e. RR ) -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = ( sup ( B , RR , < ) x. sup ( A , RR , < ) ) ) |
| 13 | 5 8 12 | syl2anc | |- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = ( sup ( B , RR , < ) x. sup ( A , RR , < ) ) ) |
| 14 | 6 | simp2d | |- ( ph -> B =/= (/) ) |
| 15 | n0 | |- ( B =/= (/) <-> E. b b e. B ) |
|
| 16 | 14 15 | sylib | |- ( ph -> E. b b e. B ) |
| 17 | 0red | |- ( ( ph /\ b e. B ) -> 0 e. RR ) |
|
| 18 | 6 | simp1d | |- ( ph -> B C_ RR ) |
| 19 | 18 | sselda | |- ( ( ph /\ b e. B ) -> b e. RR ) |
| 20 | 8 | adantr | |- ( ( ph /\ b e. B ) -> sup ( B , RR , < ) e. RR ) |
| 21 | simp1r | |- ( ( ( A. x e. A 0 <_ x /\ A. x e. B 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> A. x e. B 0 <_ x ) |
|
| 22 | 2 21 | sylbi | |- ( ph -> A. x e. B 0 <_ x ) |
| 23 | breq2 | |- ( x = b -> ( 0 <_ x <-> 0 <_ b ) ) |
|
| 24 | 23 | rspccv | |- ( A. x e. B 0 <_ x -> ( b e. B -> 0 <_ b ) ) |
| 25 | 22 24 | syl | |- ( ph -> ( b e. B -> 0 <_ b ) ) |
| 26 | 25 | imp | |- ( ( ph /\ b e. B ) -> 0 <_ b ) |
| 27 | suprub | |- ( ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) /\ b e. B ) -> b <_ sup ( B , RR , < ) ) |
|
| 28 | 6 27 | sylan | |- ( ( ph /\ b e. B ) -> b <_ sup ( B , RR , < ) ) |
| 29 | 17 19 20 26 28 | letrd | |- ( ( ph /\ b e. B ) -> 0 <_ sup ( B , RR , < ) ) |
| 30 | 16 29 | exlimddv | |- ( ph -> 0 <_ sup ( B , RR , < ) ) |
| 31 | simp1l | |- ( ( ( A. x e. A 0 <_ x /\ A. x e. B 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> A. x e. A 0 <_ x ) |
|
| 32 | 2 31 | sylbi | |- ( ph -> A. x e. A 0 <_ x ) |
| 33 | eqid | |- { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } = { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } |
|
| 34 | biid | |- ( ( ( sup ( B , RR , < ) e. RR /\ 0 <_ sup ( B , RR , < ) /\ A. x e. A 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) <-> ( ( sup ( B , RR , < ) e. RR /\ 0 <_ sup ( B , RR , < ) /\ A. x e. A 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) ) |
|
| 35 | 33 34 | supmul1 | |- ( ( ( sup ( B , RR , < ) e. RR /\ 0 <_ sup ( B , RR , < ) /\ A. x e. A 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) -> ( sup ( B , RR , < ) x. sup ( A , RR , < ) ) = sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) ) |
| 36 | 8 30 32 3 35 | syl31anc | |- ( ph -> ( sup ( B , RR , < ) x. sup ( A , RR , < ) ) = sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) ) |
| 37 | 13 36 | eqtrd | |- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) ) |
| 38 | vex | |- w e. _V |
|
| 39 | eqeq1 | |- ( z = w -> ( z = ( sup ( B , RR , < ) x. a ) <-> w = ( sup ( B , RR , < ) x. a ) ) ) |
|
| 40 | 39 | rexbidv | |- ( z = w -> ( E. a e. A z = ( sup ( B , RR , < ) x. a ) <-> E. a e. A w = ( sup ( B , RR , < ) x. a ) ) ) |
| 41 | 38 40 | elab | |- ( w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } <-> E. a e. A w = ( sup ( B , RR , < ) x. a ) ) |
| 42 | 8 | adantr | |- ( ( ph /\ a e. A ) -> sup ( B , RR , < ) e. RR ) |
| 43 | 3 | simp1d | |- ( ph -> A C_ RR ) |
| 44 | 43 | sselda | |- ( ( ph /\ a e. A ) -> a e. RR ) |
| 45 | recn | |- ( a e. RR -> a e. CC ) |
|
| 46 | mulcom | |- ( ( sup ( B , RR , < ) e. CC /\ a e. CC ) -> ( sup ( B , RR , < ) x. a ) = ( a x. sup ( B , RR , < ) ) ) |
|
| 47 | 10 45 46 | syl2an | |- ( ( sup ( B , RR , < ) e. RR /\ a e. RR ) -> ( sup ( B , RR , < ) x. a ) = ( a x. sup ( B , RR , < ) ) ) |
| 48 | 42 44 47 | syl2anc | |- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) x. a ) = ( a x. sup ( B , RR , < ) ) ) |
| 49 | breq2 | |- ( x = a -> ( 0 <_ x <-> 0 <_ a ) ) |
|
| 50 | 49 | rspccv | |- ( A. x e. A 0 <_ x -> ( a e. A -> 0 <_ a ) ) |
| 51 | 32 50 | syl | |- ( ph -> ( a e. A -> 0 <_ a ) ) |
| 52 | 51 | imp | |- ( ( ph /\ a e. A ) -> 0 <_ a ) |
| 53 | 22 | adantr | |- ( ( ph /\ a e. A ) -> A. x e. B 0 <_ x ) |
| 54 | 6 | adantr | |- ( ( ph /\ a e. A ) -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
| 55 | eqid | |- { z | E. b e. B z = ( a x. b ) } = { z | E. b e. B z = ( a x. b ) } |
|
| 56 | biid | |- ( ( ( a e. RR /\ 0 <_ a /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) <-> ( ( a e. RR /\ 0 <_ a /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) ) |
|
| 57 | 55 56 | supmul1 | |- ( ( ( a e. RR /\ 0 <_ a /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> ( a x. sup ( B , RR , < ) ) = sup ( { z | E. b e. B z = ( a x. b ) } , RR , < ) ) |
| 58 | 44 52 53 54 57 | syl31anc | |- ( ( ph /\ a e. A ) -> ( a x. sup ( B , RR , < ) ) = sup ( { z | E. b e. B z = ( a x. b ) } , RR , < ) ) |
| 59 | eqeq1 | |- ( z = w -> ( z = ( a x. b ) <-> w = ( a x. b ) ) ) |
|
| 60 | 59 | rexbidv | |- ( z = w -> ( E. b e. B z = ( a x. b ) <-> E. b e. B w = ( a x. b ) ) ) |
| 61 | 38 60 | elab | |- ( w e. { z | E. b e. B z = ( a x. b ) } <-> E. b e. B w = ( a x. b ) ) |
| 62 | rspe | |- ( ( a e. A /\ E. b e. B w = ( a x. b ) ) -> E. a e. A E. b e. B w = ( a x. b ) ) |
|
| 63 | oveq1 | |- ( v = a -> ( v x. b ) = ( a x. b ) ) |
|
| 64 | 63 | eqeq2d | |- ( v = a -> ( z = ( v x. b ) <-> z = ( a x. b ) ) ) |
| 65 | 64 | rexbidv | |- ( v = a -> ( E. b e. B z = ( v x. b ) <-> E. b e. B z = ( a x. b ) ) ) |
| 66 | 65 | cbvrexvw | |- ( E. v e. A E. b e. B z = ( v x. b ) <-> E. a e. A E. b e. B z = ( a x. b ) ) |
| 67 | 59 | 2rexbidv | |- ( z = w -> ( E. a e. A E. b e. B z = ( a x. b ) <-> E. a e. A E. b e. B w = ( a x. b ) ) ) |
| 68 | 66 67 | bitrid | |- ( z = w -> ( E. v e. A E. b e. B z = ( v x. b ) <-> E. a e. A E. b e. B w = ( a x. b ) ) ) |
| 69 | 38 68 1 | elab2 | |- ( w e. C <-> E. a e. A E. b e. B w = ( a x. b ) ) |
| 70 | 62 69 | sylibr | |- ( ( a e. A /\ E. b e. B w = ( a x. b ) ) -> w e. C ) |
| 71 | 70 | ex | |- ( a e. A -> ( E. b e. B w = ( a x. b ) -> w e. C ) ) |
| 72 | 1 2 | supmullem2 | |- ( ph -> ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) ) |
| 73 | suprub | |- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
|
| 74 | 73 | ex | |- ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) -> ( w e. C -> w <_ sup ( C , RR , < ) ) ) |
| 75 | 72 74 | syl | |- ( ph -> ( w e. C -> w <_ sup ( C , RR , < ) ) ) |
| 76 | 71 75 | sylan9r | |- ( ( ph /\ a e. A ) -> ( E. b e. B w = ( a x. b ) -> w <_ sup ( C , RR , < ) ) ) |
| 77 | 61 76 | biimtrid | |- ( ( ph /\ a e. A ) -> ( w e. { z | E. b e. B z = ( a x. b ) } -> w <_ sup ( C , RR , < ) ) ) |
| 78 | 77 | ralrimiv | |- ( ( ph /\ a e. A ) -> A. w e. { z | E. b e. B z = ( a x. b ) } w <_ sup ( C , RR , < ) ) |
| 79 | 44 | adantr | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> a e. RR ) |
| 80 | 19 | adantlr | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> b e. RR ) |
| 81 | 79 80 | remulcld | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( a x. b ) e. RR ) |
| 82 | eleq1a | |- ( ( a x. b ) e. RR -> ( z = ( a x. b ) -> z e. RR ) ) |
|
| 83 | 81 82 | syl | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( z = ( a x. b ) -> z e. RR ) ) |
| 84 | 83 | rexlimdva | |- ( ( ph /\ a e. A ) -> ( E. b e. B z = ( a x. b ) -> z e. RR ) ) |
| 85 | 84 | abssdv | |- ( ( ph /\ a e. A ) -> { z | E. b e. B z = ( a x. b ) } C_ RR ) |
| 86 | ovex | |- ( a x. b ) e. _V |
|
| 87 | 86 | isseti | |- E. w w = ( a x. b ) |
| 88 | 87 | rgenw | |- A. b e. B E. w w = ( a x. b ) |
| 89 | r19.2z | |- ( ( B =/= (/) /\ A. b e. B E. w w = ( a x. b ) ) -> E. b e. B E. w w = ( a x. b ) ) |
|
| 90 | 14 88 89 | sylancl | |- ( ph -> E. b e. B E. w w = ( a x. b ) ) |
| 91 | rexcom4 | |- ( E. b e. B E. w w = ( a x. b ) <-> E. w E. b e. B w = ( a x. b ) ) |
|
| 92 | 90 91 | sylib | |- ( ph -> E. w E. b e. B w = ( a x. b ) ) |
| 93 | 60 | cbvexvw | |- ( E. z E. b e. B z = ( a x. b ) <-> E. w E. b e. B w = ( a x. b ) ) |
| 94 | 92 93 | sylibr | |- ( ph -> E. z E. b e. B z = ( a x. b ) ) |
| 95 | abn0 | |- ( { z | E. b e. B z = ( a x. b ) } =/= (/) <-> E. z E. b e. B z = ( a x. b ) ) |
|
| 96 | 94 95 | sylibr | |- ( ph -> { z | E. b e. B z = ( a x. b ) } =/= (/) ) |
| 97 | 96 | adantr | |- ( ( ph /\ a e. A ) -> { z | E. b e. B z = ( a x. b ) } =/= (/) ) |
| 98 | suprcl | |- ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) -> sup ( C , RR , < ) e. RR ) |
|
| 99 | 72 98 | syl | |- ( ph -> sup ( C , RR , < ) e. RR ) |
| 100 | 99 | adantr | |- ( ( ph /\ a e. A ) -> sup ( C , RR , < ) e. RR ) |
| 101 | brralrspcev | |- ( ( sup ( C , RR , < ) e. RR /\ A. w e. { z | E. b e. B z = ( a x. b ) } w <_ sup ( C , RR , < ) ) -> E. x e. RR A. w e. { z | E. b e. B z = ( a x. b ) } w <_ x ) |
|
| 102 | 100 78 101 | syl2anc | |- ( ( ph /\ a e. A ) -> E. x e. RR A. w e. { z | E. b e. B z = ( a x. b ) } w <_ x ) |
| 103 | suprleub | |- ( ( ( { z | E. b e. B z = ( a x. b ) } C_ RR /\ { z | E. b e. B z = ( a x. b ) } =/= (/) /\ E. x e. RR A. w e. { z | E. b e. B z = ( a x. b ) } w <_ x ) /\ sup ( C , RR , < ) e. RR ) -> ( sup ( { z | E. b e. B z = ( a x. b ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. b e. B z = ( a x. b ) } w <_ sup ( C , RR , < ) ) ) |
|
| 104 | 85 97 102 100 103 | syl31anc | |- ( ( ph /\ a e. A ) -> ( sup ( { z | E. b e. B z = ( a x. b ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. b e. B z = ( a x. b ) } w <_ sup ( C , RR , < ) ) ) |
| 105 | 78 104 | mpbird | |- ( ( ph /\ a e. A ) -> sup ( { z | E. b e. B z = ( a x. b ) } , RR , < ) <_ sup ( C , RR , < ) ) |
| 106 | 58 105 | eqbrtrd | |- ( ( ph /\ a e. A ) -> ( a x. sup ( B , RR , < ) ) <_ sup ( C , RR , < ) ) |
| 107 | 48 106 | eqbrtrd | |- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) x. a ) <_ sup ( C , RR , < ) ) |
| 108 | breq1 | |- ( w = ( sup ( B , RR , < ) x. a ) -> ( w <_ sup ( C , RR , < ) <-> ( sup ( B , RR , < ) x. a ) <_ sup ( C , RR , < ) ) ) |
|
| 109 | 107 108 | syl5ibrcom | |- ( ( ph /\ a e. A ) -> ( w = ( sup ( B , RR , < ) x. a ) -> w <_ sup ( C , RR , < ) ) ) |
| 110 | 109 | rexlimdva | |- ( ph -> ( E. a e. A w = ( sup ( B , RR , < ) x. a ) -> w <_ sup ( C , RR , < ) ) ) |
| 111 | 41 110 | biimtrid | |- ( ph -> ( w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } -> w <_ sup ( C , RR , < ) ) ) |
| 112 | 111 | ralrimiv | |- ( ph -> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ sup ( C , RR , < ) ) |
| 113 | 42 44 | remulcld | |- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) x. a ) e. RR ) |
| 114 | eleq1a | |- ( ( sup ( B , RR , < ) x. a ) e. RR -> ( z = ( sup ( B , RR , < ) x. a ) -> z e. RR ) ) |
|
| 115 | 113 114 | syl | |- ( ( ph /\ a e. A ) -> ( z = ( sup ( B , RR , < ) x. a ) -> z e. RR ) ) |
| 116 | 115 | rexlimdva | |- ( ph -> ( E. a e. A z = ( sup ( B , RR , < ) x. a ) -> z e. RR ) ) |
| 117 | 116 | abssdv | |- ( ph -> { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } C_ RR ) |
| 118 | 3 | simp2d | |- ( ph -> A =/= (/) ) |
| 119 | ovex | |- ( sup ( B , RR , < ) x. a ) e. _V |
|
| 120 | 119 | isseti | |- E. z z = ( sup ( B , RR , < ) x. a ) |
| 121 | 120 | rgenw | |- A. a e. A E. z z = ( sup ( B , RR , < ) x. a ) |
| 122 | r19.2z | |- ( ( A =/= (/) /\ A. a e. A E. z z = ( sup ( B , RR , < ) x. a ) ) -> E. a e. A E. z z = ( sup ( B , RR , < ) x. a ) ) |
|
| 123 | 118 121 122 | sylancl | |- ( ph -> E. a e. A E. z z = ( sup ( B , RR , < ) x. a ) ) |
| 124 | rexcom4 | |- ( E. a e. A E. z z = ( sup ( B , RR , < ) x. a ) <-> E. z E. a e. A z = ( sup ( B , RR , < ) x. a ) ) |
|
| 125 | 123 124 | sylib | |- ( ph -> E. z E. a e. A z = ( sup ( B , RR , < ) x. a ) ) |
| 126 | abn0 | |- ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } =/= (/) <-> E. z E. a e. A z = ( sup ( B , RR , < ) x. a ) ) |
|
| 127 | 125 126 | sylibr | |- ( ph -> { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } =/= (/) ) |
| 128 | brralrspcev | |- ( ( sup ( C , RR , < ) e. RR /\ A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ sup ( C , RR , < ) ) -> E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ x ) |
|
| 129 | 99 112 128 | syl2anc | |- ( ph -> E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ x ) |
| 130 | suprleub | |- ( ( ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } C_ RR /\ { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } =/= (/) /\ E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ x ) /\ sup ( C , RR , < ) e. RR ) -> ( sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ sup ( C , RR , < ) ) ) |
|
| 131 | 117 127 129 99 130 | syl31anc | |- ( ph -> ( sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ sup ( C , RR , < ) ) ) |
| 132 | 112 131 | mpbird | |- ( ph -> sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) <_ sup ( C , RR , < ) ) |
| 133 | 37 132 | eqbrtrd | |- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) <_ sup ( C , RR , < ) ) |
| 134 | 1 2 | supmullem1 | |- ( ph -> A. w e. C w <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) |
| 135 | 5 8 | remulcld | |- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) e. RR ) |
| 136 | suprleub | |- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) e. RR ) -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) <-> A. w e. C w <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) ) |
|
| 137 | 72 135 136 | syl2anc | |- ( ph -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) <-> A. w e. C w <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) ) |
| 138 | 134 137 | mpbird | |- ( ph -> sup ( C , RR , < ) <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) |
| 139 | 135 99 | letri3d | |- ( ph -> ( ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = sup ( C , RR , < ) <-> ( ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) <_ sup ( C , RR , < ) /\ sup ( C , RR , < ) <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) ) ) |
| 140 | 133 138 139 | mpbir2and | |- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = sup ( C , RR , < ) ) |