This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum function distributes over addition in a sense similar to that in supmul . (Contributed by Brendan Leahy, 26-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supadd.a1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| supadd.a2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| supadd.a3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | ||
| supadd.b1 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | ||
| supadd.b2 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| supadd.b3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) | ||
| supadd.c | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 + 𝑏 ) } | ||
| Assertion | supadd | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) = sup ( 𝐶 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supadd.a1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | supadd.a2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 3 | supadd.a3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| 4 | supadd.b1 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| 5 | supadd.b2 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 6 | supadd.b3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) | |
| 7 | supadd.c | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 + 𝑏 ) } | |
| 8 | 4 5 6 | suprcld | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 9 | eqid | ⊢ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( 𝑎 + sup ( 𝐵 , ℝ , < ) ) } = { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( 𝑎 + sup ( 𝐵 , ℝ , < ) ) } | |
| 10 | 1 2 3 8 9 | supaddc | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( 𝑎 + sup ( 𝐵 , ℝ , < ) ) } , ℝ , < ) ) |
| 11 | 1 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℂ ) |
| 13 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 14 | 13 | recnd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → sup ( 𝐵 , ℝ , < ) ∈ ℂ ) |
| 15 | 12 14 | addcomd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + sup ( 𝐵 , ℝ , < ) ) = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) |
| 16 | 15 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑧 = ( 𝑎 + sup ( 𝐵 , ℝ , < ) ) ↔ 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) ) |
| 17 | 16 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 𝑧 = ( 𝑎 + sup ( 𝐵 , ℝ , < ) ) ↔ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) ) |
| 18 | 17 | abbidv | ⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( 𝑎 + sup ( 𝐵 , ℝ , < ) ) } = { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } ) |
| 19 | 18 | supeq1d | ⊢ ( 𝜑 → sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( 𝑎 + sup ( 𝐵 , ℝ , < ) ) } , ℝ , < ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } , ℝ , < ) ) |
| 20 | 10 19 | eqtrd | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } , ℝ , < ) ) |
| 21 | vex | ⊢ 𝑤 ∈ V | |
| 22 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ↔ 𝑤 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) ) | |
| 23 | 22 | rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ↔ ∃ 𝑎 ∈ 𝐴 𝑤 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) ) |
| 24 | 21 23 | elab | ⊢ ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } ↔ ∃ 𝑎 ∈ 𝐴 𝑤 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) |
| 25 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐵 ⊆ ℝ ) |
| 26 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐵 ≠ ∅ ) |
| 27 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) |
| 28 | eqid | ⊢ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑏 + 𝑎 ) } = { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑏 + 𝑎 ) } | |
| 29 | 25 26 27 11 28 | supaddc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) = sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑏 + 𝑎 ) } , ℝ , < ) ) |
| 30 | 4 | sselda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℝ ) |
| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℝ ) |
| 32 | 31 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℂ ) |
| 33 | 11 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ ℝ ) |
| 34 | 33 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ ℂ ) |
| 35 | 32 34 | addcomd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 + 𝑎 ) = ( 𝑎 + 𝑏 ) ) |
| 36 | 35 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑧 = ( 𝑏 + 𝑎 ) ↔ 𝑧 = ( 𝑎 + 𝑏 ) ) ) |
| 37 | 36 | rexbidva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑏 + 𝑎 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) ) ) |
| 38 | 37 | abbidv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑏 + 𝑎 ) } = { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } ) |
| 39 | 38 | supeq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑏 + 𝑎 ) } , ℝ , < ) = sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } , ℝ , < ) ) |
| 40 | 29 39 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) = sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } , ℝ , < ) ) |
| 41 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 + 𝑏 ) ↔ 𝑤 = ( 𝑎 + 𝑏 ) ) ) | |
| 42 | 41 | rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) ) |
| 43 | 21 42 | elab | ⊢ ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } ↔ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) |
| 44 | rspe | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) | |
| 45 | oveq1 | ⊢ ( 𝑣 = 𝑎 → ( 𝑣 + 𝑏 ) = ( 𝑎 + 𝑏 ) ) | |
| 46 | 45 | eqeq2d | ⊢ ( 𝑣 = 𝑎 → ( 𝑧 = ( 𝑣 + 𝑏 ) ↔ 𝑧 = ( 𝑎 + 𝑏 ) ) ) |
| 47 | 46 | rexbidv | ⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 + 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) ) ) |
| 48 | 47 | cbvrexvw | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 + 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) ) |
| 49 | 41 | 2rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) ) |
| 50 | 48 49 | bitrid | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑣 + 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) ) |
| 51 | 21 50 7 | elab2 | ⊢ ( 𝑤 ∈ 𝐶 ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) |
| 52 | 44 51 | sylibr | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) → 𝑤 ∈ 𝐶 ) |
| 53 | 52 | ex | ⊢ ( 𝑎 ∈ 𝐴 → ( ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) → 𝑤 ∈ 𝐶 ) ) |
| 54 | 1 | sseld | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
| 55 | 4 | sseld | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ ℝ ) ) |
| 56 | 54 55 | anim12d | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ) |
| 57 | readdcl | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 + 𝑏 ) ∈ ℝ ) | |
| 58 | 56 57 | syl6 | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 + 𝑏 ) ∈ ℝ ) ) |
| 59 | eleq1a | ⊢ ( ( 𝑎 + 𝑏 ) ∈ ℝ → ( 𝑤 = ( 𝑎 + 𝑏 ) → 𝑤 ∈ ℝ ) ) | |
| 60 | 58 59 | syl6 | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑤 = ( 𝑎 + 𝑏 ) → 𝑤 ∈ ℝ ) ) ) |
| 61 | 60 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) → 𝑤 ∈ ℝ ) ) |
| 62 | 51 61 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ∈ ℝ ) ) |
| 63 | 62 | ssrdv | ⊢ ( 𝜑 → 𝐶 ⊆ ℝ ) |
| 64 | ovex | ⊢ ( 𝑎 + 𝑏 ) ∈ V | |
| 65 | 64 | isseti | ⊢ ∃ 𝑤 𝑤 = ( 𝑎 + 𝑏 ) |
| 66 | 65 | rgenw | ⊢ ∀ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 + 𝑏 ) |
| 67 | r19.2z | ⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 + 𝑏 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 + 𝑏 ) ) | |
| 68 | 5 66 67 | sylancl | ⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 + 𝑏 ) ) |
| 69 | rexcom4 | ⊢ ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝑎 + 𝑏 ) ↔ ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) | |
| 70 | 68 69 | sylib | ⊢ ( 𝜑 → ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) |
| 71 | 70 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) |
| 72 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) | |
| 73 | 2 71 72 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) |
| 74 | rexcom4 | ⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) | |
| 75 | 73 74 | sylib | ⊢ ( 𝜑 → ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) |
| 76 | n0 | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) | |
| 77 | 51 | exbii | ⊢ ( ∃ 𝑤 𝑤 ∈ 𝐶 ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) |
| 78 | 76 77 | bitri | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) ) |
| 79 | 75 78 | sylibr | ⊢ ( 𝜑 → 𝐶 ≠ ∅ ) |
| 80 | 1 2 3 | suprcld | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 81 | 80 8 | readdcld | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ) |
| 82 | 11 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ ℝ ) |
| 83 | 30 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ ℝ ) |
| 84 | 80 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 85 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 86 | 1 2 3 | 3jca | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 87 | suprub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) | |
| 88 | 86 87 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 89 | 88 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 90 | 4 5 6 | 3jca | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) |
| 91 | suprub | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) | |
| 92 | 90 91 | sylan | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 93 | 92 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 94 | 82 83 84 85 89 93 | le2addd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 + 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) |
| 95 | 94 | ex | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 + 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) ) |
| 96 | breq1 | ⊢ ( 𝑤 = ( 𝑎 + 𝑏 ) → ( 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ↔ ( 𝑎 + 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) ) | |
| 97 | 96 | biimprcd | ⊢ ( ( 𝑎 + 𝑏 ) ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) → ( 𝑤 = ( 𝑎 + 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) ) |
| 98 | 95 97 | syl6 | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑤 = ( 𝑎 + 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) ) ) |
| 99 | 98 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) ) |
| 100 | 51 99 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) ) |
| 101 | 100 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) |
| 102 | brralrspcev | ⊢ ( ( ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ∧ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) | |
| 103 | 81 101 102 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) |
| 104 | suprub | ⊢ ( ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) | |
| 105 | 104 | ex | ⊢ ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) → ( 𝑤 ∈ 𝐶 → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 106 | 63 79 103 105 | syl3anc | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 107 | 53 106 | sylan9r | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝑎 + 𝑏 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 108 | 43 107 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 109 | 108 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
| 110 | 33 31 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 + 𝑏 ) ∈ ℝ ) |
| 111 | eleq1a | ⊢ ( ( 𝑎 + 𝑏 ) ∈ ℝ → ( 𝑧 = ( 𝑎 + 𝑏 ) → 𝑧 ∈ ℝ ) ) | |
| 112 | 110 111 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑧 = ( 𝑎 + 𝑏 ) → 𝑧 ∈ ℝ ) ) |
| 113 | 112 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) → 𝑧 ∈ ℝ ) ) |
| 114 | 113 | abssdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } ⊆ ℝ ) |
| 115 | 64 | isseti | ⊢ ∃ 𝑧 𝑧 = ( 𝑎 + 𝑏 ) |
| 116 | 115 | rgenw | ⊢ ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 𝑧 = ( 𝑎 + 𝑏 ) |
| 117 | r19.2z | ⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 𝑧 = ( 𝑎 + 𝑏 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑧 𝑧 = ( 𝑎 + 𝑏 ) ) | |
| 118 | 5 116 117 | sylancl | ⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐵 ∃ 𝑧 𝑧 = ( 𝑎 + 𝑏 ) ) |
| 119 | rexcom4 | ⊢ ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑧 𝑧 = ( 𝑎 + 𝑏 ) ↔ ∃ 𝑧 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) ) | |
| 120 | 118 119 | sylib | ⊢ ( 𝜑 → ∃ 𝑧 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) ) |
| 121 | abn0 | ⊢ ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } ≠ ∅ ↔ ∃ 𝑧 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) ) | |
| 122 | 120 121 | sylibr | ⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } ≠ ∅ ) |
| 123 | 122 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } ≠ ∅ ) |
| 124 | 63 79 103 | suprcld | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
| 125 | 124 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
| 126 | brralrspcev | ⊢ ( ( sup ( 𝐶 , ℝ , < ) ∈ ℝ ∧ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } 𝑤 ≤ 𝑥 ) | |
| 127 | 125 109 126 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } 𝑤 ≤ 𝑥 ) |
| 128 | suprleub | ⊢ ( ( ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } 𝑤 ≤ 𝑥 ) ∧ sup ( 𝐶 , ℝ , < ) ∈ ℝ ) → ( sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) | |
| 129 | 114 123 127 125 128 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 130 | 109 129 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → sup ( { 𝑧 ∣ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 + 𝑏 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 131 | 40 130 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 132 | breq1 | ⊢ ( 𝑤 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) → ( 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ↔ ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ≤ sup ( 𝐶 , ℝ , < ) ) ) | |
| 133 | 131 132 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑤 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 134 | 133 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 𝑤 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 135 | 24 134 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 136 | 135 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
| 137 | 13 11 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ∈ ℝ ) |
| 138 | eleq1a | ⊢ ( ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ∈ ℝ → ( 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) → 𝑧 ∈ ℝ ) ) | |
| 139 | 137 138 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) → 𝑧 ∈ ℝ ) ) |
| 140 | 139 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) → 𝑧 ∈ ℝ ) ) |
| 141 | 140 | abssdv | ⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } ⊆ ℝ ) |
| 142 | ovex | ⊢ ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ∈ V | |
| 143 | 142 | isseti | ⊢ ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) |
| 144 | 143 | rgenw | ⊢ ∀ 𝑎 ∈ 𝐴 ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) |
| 145 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) | |
| 146 | 2 144 145 | sylancl | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) |
| 147 | rexcom4 | ⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑧 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ↔ ∃ 𝑧 ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) | |
| 148 | 146 147 | sylib | ⊢ ( 𝜑 → ∃ 𝑧 ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) |
| 149 | abn0 | ⊢ ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } ≠ ∅ ↔ ∃ 𝑧 ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) ) | |
| 150 | 148 149 | sylibr | ⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } ≠ ∅ ) |
| 151 | brralrspcev | ⊢ ( ( sup ( 𝐶 , ℝ , < ) ∈ ℝ ∧ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } 𝑤 ≤ 𝑥 ) | |
| 152 | 124 136 151 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } 𝑤 ≤ 𝑥 ) |
| 153 | suprleub | ⊢ ( ( ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } 𝑤 ≤ 𝑥 ) ∧ sup ( 𝐶 , ℝ , < ) ∈ ℝ ) → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) | |
| 154 | 141 150 152 124 153 | syl31anc | ⊢ ( 𝜑 → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 155 | 136 154 | mpbird | ⊢ ( 𝜑 → sup ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = ( sup ( 𝐵 , ℝ , < ) + 𝑎 ) } , ℝ , < ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 156 | 20 155 | eqbrtrd | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 157 | suprleub | ⊢ ( ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ∧ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ) → ( sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ↔ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) ) | |
| 158 | 63 79 103 81 157 | syl31anc | ⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ↔ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) ) |
| 159 | 101 158 | mpbird | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) |
| 160 | 81 124 | letri3d | ⊢ ( 𝜑 → ( ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) = sup ( 𝐶 , ℝ , < ) ↔ ( ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ≤ sup ( 𝐶 , ℝ , < ) ∧ sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) ) ) ) |
| 161 | 156 159 160 | mpbir2and | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + sup ( 𝐵 , ℝ , < ) ) = sup ( 𝐶 , ℝ , < ) ) |