This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum function distributes over addition in a sense similar to that in supmul1 . (Contributed by Brendan Leahy, 25-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supadd.a1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| supadd.a2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| supadd.a3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | ||
| supaddc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| supaddc.c | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + 𝐵 ) } | ||
| Assertion | supaddc | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) = sup ( 𝐶 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supadd.a1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | supadd.a2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 3 | supadd.a3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| 4 | supaddc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 5 | supaddc.c | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + 𝐵 ) } | |
| 6 | vex | ⊢ 𝑤 ∈ V | |
| 7 | oveq1 | ⊢ ( 𝑣 = 𝑎 → ( 𝑣 + 𝐵 ) = ( 𝑎 + 𝐵 ) ) | |
| 8 | 7 | eqeq2d | ⊢ ( 𝑣 = 𝑎 → ( 𝑧 = ( 𝑣 + 𝐵 ) ↔ 𝑧 = ( 𝑎 + 𝐵 ) ) ) |
| 9 | 8 | cbvrexvw | ⊢ ( ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + 𝐵 ) ↔ ∃ 𝑎 ∈ 𝐴 𝑧 = ( 𝑎 + 𝐵 ) ) |
| 10 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 + 𝐵 ) ↔ 𝑤 = ( 𝑎 + 𝐵 ) ) ) | |
| 11 | 10 | rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑎 ∈ 𝐴 𝑧 = ( 𝑎 + 𝐵 ) ↔ ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) ) |
| 12 | 9 11 | bitrid | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑣 ∈ 𝐴 𝑧 = ( 𝑣 + 𝐵 ) ↔ ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) ) |
| 13 | 6 12 5 | elab2 | ⊢ ( 𝑤 ∈ 𝐶 ↔ ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) |
| 14 | 1 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
| 15 | 1 2 3 | suprcld | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 17 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 18 | 1 2 3 | 3jca | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 19 | suprub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) | |
| 20 | 18 19 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 21 | 14 16 17 20 | leadd1dd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + 𝐵 ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) |
| 22 | breq1 | ⊢ ( 𝑤 = ( 𝑎 + 𝐵 ) → ( 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ↔ ( 𝑎 + 𝐵 ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) | |
| 23 | 21 22 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑤 = ( 𝑎 + 𝐵 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
| 24 | 23 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
| 25 | 13 24 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
| 26 | 25 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) |
| 27 | 14 17 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + 𝐵 ) ∈ ℝ ) |
| 28 | eleq1a | ⊢ ( ( 𝑎 + 𝐵 ) ∈ ℝ → ( 𝑤 = ( 𝑎 + 𝐵 ) → 𝑤 ∈ ℝ ) ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑤 = ( 𝑎 + 𝐵 ) → 𝑤 ∈ ℝ ) ) |
| 30 | 29 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) → 𝑤 ∈ ℝ ) ) |
| 31 | 13 30 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ∈ ℝ ) ) |
| 32 | 31 | ssrdv | ⊢ ( 𝜑 → 𝐶 ⊆ ℝ ) |
| 33 | ovex | ⊢ ( 𝑎 + 𝐵 ) ∈ V | |
| 34 | 33 | isseti | ⊢ ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) |
| 35 | 34 | rgenw | ⊢ ∀ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) |
| 36 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) ) | |
| 37 | 2 35 36 | sylancl | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) ) |
| 38 | 13 | exbii | ⊢ ( ∃ 𝑤 𝑤 ∈ 𝐶 ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) |
| 39 | n0 | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) | |
| 40 | rexcom4 | ⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) ↔ ∃ 𝑤 ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) | |
| 41 | 38 39 40 | 3bitr4i | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) ) |
| 42 | 37 41 | sylibr | ⊢ ( 𝜑 → 𝐶 ≠ ∅ ) |
| 43 | 15 4 | readdcld | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ∈ ℝ ) |
| 44 | brralrspcev | ⊢ ( ( ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ∈ ℝ ∧ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) | |
| 45 | 43 26 44 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) |
| 46 | suprleub | ⊢ ( ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ∧ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ∈ ℝ ) → ( sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ↔ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) | |
| 47 | 32 42 45 43 46 | syl31anc | ⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ↔ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
| 48 | 26 47 | mpbird | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) |
| 49 | 32 42 45 | suprcld | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
| 50 | 49 4 15 | ltsubaddd | ⊢ ( 𝜑 → ( ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) |
| 51 | 50 | biimpar | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) → ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < sup ( 𝐴 , ℝ , < ) ) |
| 52 | 49 4 | resubcld | ⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) ∈ ℝ ) |
| 53 | suprlub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) ∈ ℝ ) → ( ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑎 ∈ 𝐴 ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) ) | |
| 54 | 1 2 3 52 53 | syl31anc | ⊢ ( 𝜑 → ( ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑎 ∈ 𝐴 ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) ) |
| 55 | 54 | adantr | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) → ( ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑎 ∈ 𝐴 ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) ) |
| 56 | 51 55 | mpbid | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) → ∃ 𝑎 ∈ 𝐴 ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) |
| 57 | 27 | adantlr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + 𝐵 ) ∈ ℝ ) |
| 58 | 49 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
| 59 | rspe | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) → ∃ 𝑎 ∈ 𝐴 𝑤 = ( 𝑎 + 𝐵 ) ) | |
| 60 | 59 13 | sylibr | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) → 𝑤 ∈ 𝐶 ) |
| 61 | 60 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) ) → 𝑤 ∈ 𝐶 ) |
| 62 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 = ( 𝑎 + 𝐵 ) ) | |
| 63 | 32 42 45 | 3jca | ⊢ ( 𝜑 → ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ) |
| 64 | suprub | ⊢ ( ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) | |
| 65 | 63 64 | sylan | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
| 66 | 65 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
| 67 | 62 66 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) ) ∧ 𝑤 ∈ 𝐶 ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 68 | 61 67 | mpdan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑤 = ( 𝑎 + 𝐵 ) ) ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 69 | 68 | expr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑤 = ( 𝑎 + 𝐵 ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 70 | 69 | exlimdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ∃ 𝑤 𝑤 = ( 𝑎 + 𝐵 ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 71 | 34 70 | mpi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 72 | 71 | adantlr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 + 𝐵 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 73 | 57 58 72 | lensymd | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → ¬ sup ( 𝐶 , ℝ , < ) < ( 𝑎 + 𝐵 ) ) |
| 74 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 75 | 14 | adantlr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
| 76 | 58 74 75 | ltsubaddd | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ↔ sup ( 𝐶 , ℝ , < ) < ( 𝑎 + 𝐵 ) ) ) |
| 77 | 73 76 | mtbird | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ∧ 𝑎 ∈ 𝐴 ) → ¬ ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) |
| 78 | 77 | nrexdv | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) → ¬ ∃ 𝑎 ∈ 𝐴 ( sup ( 𝐶 , ℝ , < ) − 𝐵 ) < 𝑎 ) |
| 79 | 56 78 | pm2.65da | ⊢ ( 𝜑 → ¬ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) |
| 80 | 49 43 | eqleltd | ⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) = ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ↔ ( sup ( 𝐶 , ℝ , < ) ≤ ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ∧ ¬ sup ( 𝐶 , ℝ , < ) < ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) ) ) |
| 81 | 48 79 80 | mpbir2and | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) = ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) ) |
| 82 | 81 | eqcomd | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) + 𝐵 ) = sup ( 𝐶 , ℝ , < ) ) |