This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum function distributes over addition in a sense similar to that in supmul . (Contributed by Brendan Leahy, 26-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supadd.a1 | |- ( ph -> A C_ RR ) |
|
| supadd.a2 | |- ( ph -> A =/= (/) ) |
||
| supadd.a3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
||
| supadd.b1 | |- ( ph -> B C_ RR ) |
||
| supadd.b2 | |- ( ph -> B =/= (/) ) |
||
| supadd.b3 | |- ( ph -> E. x e. RR A. y e. B y <_ x ) |
||
| supadd.c | |- C = { z | E. v e. A E. b e. B z = ( v + b ) } |
||
| Assertion | supadd | |- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) = sup ( C , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supadd.a1 | |- ( ph -> A C_ RR ) |
|
| 2 | supadd.a2 | |- ( ph -> A =/= (/) ) |
|
| 3 | supadd.a3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
|
| 4 | supadd.b1 | |- ( ph -> B C_ RR ) |
|
| 5 | supadd.b2 | |- ( ph -> B =/= (/) ) |
|
| 6 | supadd.b3 | |- ( ph -> E. x e. RR A. y e. B y <_ x ) |
|
| 7 | supadd.c | |- C = { z | E. v e. A E. b e. B z = ( v + b ) } |
|
| 8 | 4 5 6 | suprcld | |- ( ph -> sup ( B , RR , < ) e. RR ) |
| 9 | eqid | |- { z | E. a e. A z = ( a + sup ( B , RR , < ) ) } = { z | E. a e. A z = ( a + sup ( B , RR , < ) ) } |
|
| 10 | 1 2 3 8 9 | supaddc | |- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) = sup ( { z | E. a e. A z = ( a + sup ( B , RR , < ) ) } , RR , < ) ) |
| 11 | 1 | sselda | |- ( ( ph /\ a e. A ) -> a e. RR ) |
| 12 | 11 | recnd | |- ( ( ph /\ a e. A ) -> a e. CC ) |
| 13 | 8 | adantr | |- ( ( ph /\ a e. A ) -> sup ( B , RR , < ) e. RR ) |
| 14 | 13 | recnd | |- ( ( ph /\ a e. A ) -> sup ( B , RR , < ) e. CC ) |
| 15 | 12 14 | addcomd | |- ( ( ph /\ a e. A ) -> ( a + sup ( B , RR , < ) ) = ( sup ( B , RR , < ) + a ) ) |
| 16 | 15 | eqeq2d | |- ( ( ph /\ a e. A ) -> ( z = ( a + sup ( B , RR , < ) ) <-> z = ( sup ( B , RR , < ) + a ) ) ) |
| 17 | 16 | rexbidva | |- ( ph -> ( E. a e. A z = ( a + sup ( B , RR , < ) ) <-> E. a e. A z = ( sup ( B , RR , < ) + a ) ) ) |
| 18 | 17 | abbidv | |- ( ph -> { z | E. a e. A z = ( a + sup ( B , RR , < ) ) } = { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } ) |
| 19 | 18 | supeq1d | |- ( ph -> sup ( { z | E. a e. A z = ( a + sup ( B , RR , < ) ) } , RR , < ) = sup ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } , RR , < ) ) |
| 20 | 10 19 | eqtrd | |- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) = sup ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } , RR , < ) ) |
| 21 | vex | |- w e. _V |
|
| 22 | eqeq1 | |- ( z = w -> ( z = ( sup ( B , RR , < ) + a ) <-> w = ( sup ( B , RR , < ) + a ) ) ) |
|
| 23 | 22 | rexbidv | |- ( z = w -> ( E. a e. A z = ( sup ( B , RR , < ) + a ) <-> E. a e. A w = ( sup ( B , RR , < ) + a ) ) ) |
| 24 | 21 23 | elab | |- ( w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } <-> E. a e. A w = ( sup ( B , RR , < ) + a ) ) |
| 25 | 4 | adantr | |- ( ( ph /\ a e. A ) -> B C_ RR ) |
| 26 | 5 | adantr | |- ( ( ph /\ a e. A ) -> B =/= (/) ) |
| 27 | 6 | adantr | |- ( ( ph /\ a e. A ) -> E. x e. RR A. y e. B y <_ x ) |
| 28 | eqid | |- { z | E. b e. B z = ( b + a ) } = { z | E. b e. B z = ( b + a ) } |
|
| 29 | 25 26 27 11 28 | supaddc | |- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) + a ) = sup ( { z | E. b e. B z = ( b + a ) } , RR , < ) ) |
| 30 | 4 | sselda | |- ( ( ph /\ b e. B ) -> b e. RR ) |
| 31 | 30 | adantlr | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> b e. RR ) |
| 32 | 31 | recnd | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> b e. CC ) |
| 33 | 11 | adantr | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> a e. RR ) |
| 34 | 33 | recnd | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> a e. CC ) |
| 35 | 32 34 | addcomd | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( b + a ) = ( a + b ) ) |
| 36 | 35 | eqeq2d | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( z = ( b + a ) <-> z = ( a + b ) ) ) |
| 37 | 36 | rexbidva | |- ( ( ph /\ a e. A ) -> ( E. b e. B z = ( b + a ) <-> E. b e. B z = ( a + b ) ) ) |
| 38 | 37 | abbidv | |- ( ( ph /\ a e. A ) -> { z | E. b e. B z = ( b + a ) } = { z | E. b e. B z = ( a + b ) } ) |
| 39 | 38 | supeq1d | |- ( ( ph /\ a e. A ) -> sup ( { z | E. b e. B z = ( b + a ) } , RR , < ) = sup ( { z | E. b e. B z = ( a + b ) } , RR , < ) ) |
| 40 | 29 39 | eqtrd | |- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) + a ) = sup ( { z | E. b e. B z = ( a + b ) } , RR , < ) ) |
| 41 | eqeq1 | |- ( z = w -> ( z = ( a + b ) <-> w = ( a + b ) ) ) |
|
| 42 | 41 | rexbidv | |- ( z = w -> ( E. b e. B z = ( a + b ) <-> E. b e. B w = ( a + b ) ) ) |
| 43 | 21 42 | elab | |- ( w e. { z | E. b e. B z = ( a + b ) } <-> E. b e. B w = ( a + b ) ) |
| 44 | rspe | |- ( ( a e. A /\ E. b e. B w = ( a + b ) ) -> E. a e. A E. b e. B w = ( a + b ) ) |
|
| 45 | oveq1 | |- ( v = a -> ( v + b ) = ( a + b ) ) |
|
| 46 | 45 | eqeq2d | |- ( v = a -> ( z = ( v + b ) <-> z = ( a + b ) ) ) |
| 47 | 46 | rexbidv | |- ( v = a -> ( E. b e. B z = ( v + b ) <-> E. b e. B z = ( a + b ) ) ) |
| 48 | 47 | cbvrexvw | |- ( E. v e. A E. b e. B z = ( v + b ) <-> E. a e. A E. b e. B z = ( a + b ) ) |
| 49 | 41 | 2rexbidv | |- ( z = w -> ( E. a e. A E. b e. B z = ( a + b ) <-> E. a e. A E. b e. B w = ( a + b ) ) ) |
| 50 | 48 49 | bitrid | |- ( z = w -> ( E. v e. A E. b e. B z = ( v + b ) <-> E. a e. A E. b e. B w = ( a + b ) ) ) |
| 51 | 21 50 7 | elab2 | |- ( w e. C <-> E. a e. A E. b e. B w = ( a + b ) ) |
| 52 | 44 51 | sylibr | |- ( ( a e. A /\ E. b e. B w = ( a + b ) ) -> w e. C ) |
| 53 | 52 | ex | |- ( a e. A -> ( E. b e. B w = ( a + b ) -> w e. C ) ) |
| 54 | 1 | sseld | |- ( ph -> ( a e. A -> a e. RR ) ) |
| 55 | 4 | sseld | |- ( ph -> ( b e. B -> b e. RR ) ) |
| 56 | 54 55 | anim12d | |- ( ph -> ( ( a e. A /\ b e. B ) -> ( a e. RR /\ b e. RR ) ) ) |
| 57 | readdcl | |- ( ( a e. RR /\ b e. RR ) -> ( a + b ) e. RR ) |
|
| 58 | 56 57 | syl6 | |- ( ph -> ( ( a e. A /\ b e. B ) -> ( a + b ) e. RR ) ) |
| 59 | eleq1a | |- ( ( a + b ) e. RR -> ( w = ( a + b ) -> w e. RR ) ) |
|
| 60 | 58 59 | syl6 | |- ( ph -> ( ( a e. A /\ b e. B ) -> ( w = ( a + b ) -> w e. RR ) ) ) |
| 61 | 60 | rexlimdvv | |- ( ph -> ( E. a e. A E. b e. B w = ( a + b ) -> w e. RR ) ) |
| 62 | 51 61 | biimtrid | |- ( ph -> ( w e. C -> w e. RR ) ) |
| 63 | 62 | ssrdv | |- ( ph -> C C_ RR ) |
| 64 | ovex | |- ( a + b ) e. _V |
|
| 65 | 64 | isseti | |- E. w w = ( a + b ) |
| 66 | 65 | rgenw | |- A. b e. B E. w w = ( a + b ) |
| 67 | r19.2z | |- ( ( B =/= (/) /\ A. b e. B E. w w = ( a + b ) ) -> E. b e. B E. w w = ( a + b ) ) |
|
| 68 | 5 66 67 | sylancl | |- ( ph -> E. b e. B E. w w = ( a + b ) ) |
| 69 | rexcom4 | |- ( E. b e. B E. w w = ( a + b ) <-> E. w E. b e. B w = ( a + b ) ) |
|
| 70 | 68 69 | sylib | |- ( ph -> E. w E. b e. B w = ( a + b ) ) |
| 71 | 70 | ralrimivw | |- ( ph -> A. a e. A E. w E. b e. B w = ( a + b ) ) |
| 72 | r19.2z | |- ( ( A =/= (/) /\ A. a e. A E. w E. b e. B w = ( a + b ) ) -> E. a e. A E. w E. b e. B w = ( a + b ) ) |
|
| 73 | 2 71 72 | syl2anc | |- ( ph -> E. a e. A E. w E. b e. B w = ( a + b ) ) |
| 74 | rexcom4 | |- ( E. a e. A E. w E. b e. B w = ( a + b ) <-> E. w E. a e. A E. b e. B w = ( a + b ) ) |
|
| 75 | 73 74 | sylib | |- ( ph -> E. w E. a e. A E. b e. B w = ( a + b ) ) |
| 76 | n0 | |- ( C =/= (/) <-> E. w w e. C ) |
|
| 77 | 51 | exbii | |- ( E. w w e. C <-> E. w E. a e. A E. b e. B w = ( a + b ) ) |
| 78 | 76 77 | bitri | |- ( C =/= (/) <-> E. w E. a e. A E. b e. B w = ( a + b ) ) |
| 79 | 75 78 | sylibr | |- ( ph -> C =/= (/) ) |
| 80 | 1 2 3 | suprcld | |- ( ph -> sup ( A , RR , < ) e. RR ) |
| 81 | 80 8 | readdcld | |- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) e. RR ) |
| 82 | 11 | adantrr | |- ( ( ph /\ ( a e. A /\ b e. B ) ) -> a e. RR ) |
| 83 | 30 | adantrl | |- ( ( ph /\ ( a e. A /\ b e. B ) ) -> b e. RR ) |
| 84 | 80 | adantr | |- ( ( ph /\ ( a e. A /\ b e. B ) ) -> sup ( A , RR , < ) e. RR ) |
| 85 | 8 | adantr | |- ( ( ph /\ ( a e. A /\ b e. B ) ) -> sup ( B , RR , < ) e. RR ) |
| 86 | 1 2 3 | 3jca | |- ( ph -> ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) |
| 87 | suprub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ a e. A ) -> a <_ sup ( A , RR , < ) ) |
|
| 88 | 86 87 | sylan | |- ( ( ph /\ a e. A ) -> a <_ sup ( A , RR , < ) ) |
| 89 | 88 | adantrr | |- ( ( ph /\ ( a e. A /\ b e. B ) ) -> a <_ sup ( A , RR , < ) ) |
| 90 | 4 5 6 | 3jca | |- ( ph -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
| 91 | suprub | |- ( ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) /\ b e. B ) -> b <_ sup ( B , RR , < ) ) |
|
| 92 | 90 91 | sylan | |- ( ( ph /\ b e. B ) -> b <_ sup ( B , RR , < ) ) |
| 93 | 92 | adantrl | |- ( ( ph /\ ( a e. A /\ b e. B ) ) -> b <_ sup ( B , RR , < ) ) |
| 94 | 82 83 84 85 89 93 | le2addd | |- ( ( ph /\ ( a e. A /\ b e. B ) ) -> ( a + b ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) |
| 95 | 94 | ex | |- ( ph -> ( ( a e. A /\ b e. B ) -> ( a + b ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 96 | breq1 | |- ( w = ( a + b ) -> ( w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) <-> ( a + b ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
|
| 97 | 96 | biimprcd | |- ( ( a + b ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) -> ( w = ( a + b ) -> w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 98 | 95 97 | syl6 | |- ( ph -> ( ( a e. A /\ b e. B ) -> ( w = ( a + b ) -> w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) ) |
| 99 | 98 | rexlimdvv | |- ( ph -> ( E. a e. A E. b e. B w = ( a + b ) -> w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 100 | 51 99 | biimtrid | |- ( ph -> ( w e. C -> w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 101 | 100 | ralrimiv | |- ( ph -> A. w e. C w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) |
| 102 | brralrspcev | |- ( ( ( sup ( A , RR , < ) + sup ( B , RR , < ) ) e. RR /\ A. w e. C w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) -> E. x e. RR A. w e. C w <_ x ) |
|
| 103 | 81 101 102 | syl2anc | |- ( ph -> E. x e. RR A. w e. C w <_ x ) |
| 104 | suprub | |- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
|
| 105 | 104 | ex | |- ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) -> ( w e. C -> w <_ sup ( C , RR , < ) ) ) |
| 106 | 63 79 103 105 | syl3anc | |- ( ph -> ( w e. C -> w <_ sup ( C , RR , < ) ) ) |
| 107 | 53 106 | sylan9r | |- ( ( ph /\ a e. A ) -> ( E. b e. B w = ( a + b ) -> w <_ sup ( C , RR , < ) ) ) |
| 108 | 43 107 | biimtrid | |- ( ( ph /\ a e. A ) -> ( w e. { z | E. b e. B z = ( a + b ) } -> w <_ sup ( C , RR , < ) ) ) |
| 109 | 108 | ralrimiv | |- ( ( ph /\ a e. A ) -> A. w e. { z | E. b e. B z = ( a + b ) } w <_ sup ( C , RR , < ) ) |
| 110 | 33 31 | readdcld | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( a + b ) e. RR ) |
| 111 | eleq1a | |- ( ( a + b ) e. RR -> ( z = ( a + b ) -> z e. RR ) ) |
|
| 112 | 110 111 | syl | |- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( z = ( a + b ) -> z e. RR ) ) |
| 113 | 112 | rexlimdva | |- ( ( ph /\ a e. A ) -> ( E. b e. B z = ( a + b ) -> z e. RR ) ) |
| 114 | 113 | abssdv | |- ( ( ph /\ a e. A ) -> { z | E. b e. B z = ( a + b ) } C_ RR ) |
| 115 | 64 | isseti | |- E. z z = ( a + b ) |
| 116 | 115 | rgenw | |- A. b e. B E. z z = ( a + b ) |
| 117 | r19.2z | |- ( ( B =/= (/) /\ A. b e. B E. z z = ( a + b ) ) -> E. b e. B E. z z = ( a + b ) ) |
|
| 118 | 5 116 117 | sylancl | |- ( ph -> E. b e. B E. z z = ( a + b ) ) |
| 119 | rexcom4 | |- ( E. b e. B E. z z = ( a + b ) <-> E. z E. b e. B z = ( a + b ) ) |
|
| 120 | 118 119 | sylib | |- ( ph -> E. z E. b e. B z = ( a + b ) ) |
| 121 | abn0 | |- ( { z | E. b e. B z = ( a + b ) } =/= (/) <-> E. z E. b e. B z = ( a + b ) ) |
|
| 122 | 120 121 | sylibr | |- ( ph -> { z | E. b e. B z = ( a + b ) } =/= (/) ) |
| 123 | 122 | adantr | |- ( ( ph /\ a e. A ) -> { z | E. b e. B z = ( a + b ) } =/= (/) ) |
| 124 | 63 79 103 | suprcld | |- ( ph -> sup ( C , RR , < ) e. RR ) |
| 125 | 124 | adantr | |- ( ( ph /\ a e. A ) -> sup ( C , RR , < ) e. RR ) |
| 126 | brralrspcev | |- ( ( sup ( C , RR , < ) e. RR /\ A. w e. { z | E. b e. B z = ( a + b ) } w <_ sup ( C , RR , < ) ) -> E. x e. RR A. w e. { z | E. b e. B z = ( a + b ) } w <_ x ) |
|
| 127 | 125 109 126 | syl2anc | |- ( ( ph /\ a e. A ) -> E. x e. RR A. w e. { z | E. b e. B z = ( a + b ) } w <_ x ) |
| 128 | suprleub | |- ( ( ( { z | E. b e. B z = ( a + b ) } C_ RR /\ { z | E. b e. B z = ( a + b ) } =/= (/) /\ E. x e. RR A. w e. { z | E. b e. B z = ( a + b ) } w <_ x ) /\ sup ( C , RR , < ) e. RR ) -> ( sup ( { z | E. b e. B z = ( a + b ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. b e. B z = ( a + b ) } w <_ sup ( C , RR , < ) ) ) |
|
| 129 | 114 123 127 125 128 | syl31anc | |- ( ( ph /\ a e. A ) -> ( sup ( { z | E. b e. B z = ( a + b ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. b e. B z = ( a + b ) } w <_ sup ( C , RR , < ) ) ) |
| 130 | 109 129 | mpbird | |- ( ( ph /\ a e. A ) -> sup ( { z | E. b e. B z = ( a + b ) } , RR , < ) <_ sup ( C , RR , < ) ) |
| 131 | 40 130 | eqbrtrd | |- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) + a ) <_ sup ( C , RR , < ) ) |
| 132 | breq1 | |- ( w = ( sup ( B , RR , < ) + a ) -> ( w <_ sup ( C , RR , < ) <-> ( sup ( B , RR , < ) + a ) <_ sup ( C , RR , < ) ) ) |
|
| 133 | 131 132 | syl5ibrcom | |- ( ( ph /\ a e. A ) -> ( w = ( sup ( B , RR , < ) + a ) -> w <_ sup ( C , RR , < ) ) ) |
| 134 | 133 | rexlimdva | |- ( ph -> ( E. a e. A w = ( sup ( B , RR , < ) + a ) -> w <_ sup ( C , RR , < ) ) ) |
| 135 | 24 134 | biimtrid | |- ( ph -> ( w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } -> w <_ sup ( C , RR , < ) ) ) |
| 136 | 135 | ralrimiv | |- ( ph -> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ sup ( C , RR , < ) ) |
| 137 | 13 11 | readdcld | |- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) + a ) e. RR ) |
| 138 | eleq1a | |- ( ( sup ( B , RR , < ) + a ) e. RR -> ( z = ( sup ( B , RR , < ) + a ) -> z e. RR ) ) |
|
| 139 | 137 138 | syl | |- ( ( ph /\ a e. A ) -> ( z = ( sup ( B , RR , < ) + a ) -> z e. RR ) ) |
| 140 | 139 | rexlimdva | |- ( ph -> ( E. a e. A z = ( sup ( B , RR , < ) + a ) -> z e. RR ) ) |
| 141 | 140 | abssdv | |- ( ph -> { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } C_ RR ) |
| 142 | ovex | |- ( sup ( B , RR , < ) + a ) e. _V |
|
| 143 | 142 | isseti | |- E. z z = ( sup ( B , RR , < ) + a ) |
| 144 | 143 | rgenw | |- A. a e. A E. z z = ( sup ( B , RR , < ) + a ) |
| 145 | r19.2z | |- ( ( A =/= (/) /\ A. a e. A E. z z = ( sup ( B , RR , < ) + a ) ) -> E. a e. A E. z z = ( sup ( B , RR , < ) + a ) ) |
|
| 146 | 2 144 145 | sylancl | |- ( ph -> E. a e. A E. z z = ( sup ( B , RR , < ) + a ) ) |
| 147 | rexcom4 | |- ( E. a e. A E. z z = ( sup ( B , RR , < ) + a ) <-> E. z E. a e. A z = ( sup ( B , RR , < ) + a ) ) |
|
| 148 | 146 147 | sylib | |- ( ph -> E. z E. a e. A z = ( sup ( B , RR , < ) + a ) ) |
| 149 | abn0 | |- ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } =/= (/) <-> E. z E. a e. A z = ( sup ( B , RR , < ) + a ) ) |
|
| 150 | 148 149 | sylibr | |- ( ph -> { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } =/= (/) ) |
| 151 | brralrspcev | |- ( ( sup ( C , RR , < ) e. RR /\ A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ sup ( C , RR , < ) ) -> E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ x ) |
|
| 152 | 124 136 151 | syl2anc | |- ( ph -> E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ x ) |
| 153 | suprleub | |- ( ( ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } C_ RR /\ { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } =/= (/) /\ E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ x ) /\ sup ( C , RR , < ) e. RR ) -> ( sup ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ sup ( C , RR , < ) ) ) |
|
| 154 | 141 150 152 124 153 | syl31anc | |- ( ph -> ( sup ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ sup ( C , RR , < ) ) ) |
| 155 | 136 154 | mpbird | |- ( ph -> sup ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } , RR , < ) <_ sup ( C , RR , < ) ) |
| 156 | 20 155 | eqbrtrd | |- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) <_ sup ( C , RR , < ) ) |
| 157 | suprleub | |- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) e. RR ) -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) <-> A. w e. C w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
|
| 158 | 63 79 103 81 157 | syl31anc | |- ( ph -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) <-> A. w e. C w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 159 | 101 158 | mpbird | |- ( ph -> sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) |
| 160 | 81 124 | letri3d | |- ( ph -> ( ( sup ( A , RR , < ) + sup ( B , RR , < ) ) = sup ( C , RR , < ) <-> ( ( sup ( A , RR , < ) + sup ( B , RR , < ) ) <_ sup ( C , RR , < ) /\ sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) ) |
| 161 | 156 159 160 | mpbir2and | |- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) = sup ( C , RR , < ) ) |