This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgpsr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| subrgpsr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| subrgpsr.u | ⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) | ||
| subrgpsr.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| Assertion | subrgpsr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgpsr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | subrgpsr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | subrgpsr.u | ⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) | |
| 4 | subrgpsr.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | simpl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐼 ∈ 𝑉 ) | |
| 6 | subrgrcl | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 8 | 1 5 7 | psrring | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring ) |
| 9 | 2 | subrgring | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐻 ∈ Ring ) |
| 11 | 3 5 10 | psrring | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑈 ∈ Ring ) |
| 12 | 4 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 13 | eqid | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) | |
| 14 | simpr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 15 | 1 2 3 4 13 14 | resspsrbas | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 = ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 16 | 1 2 3 4 13 14 | resspsradd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 ↾s 𝐵 ) ) 𝑦 ) ) |
| 17 | 1 2 3 4 13 14 | resspsrmul | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑆 ↾s 𝐵 ) ) 𝑦 ) ) |
| 18 | 12 15 16 17 | ringpropd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑈 ∈ Ring ↔ ( 𝑆 ↾s 𝐵 ) ∈ Ring ) ) |
| 19 | 11 18 | mpbid | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 21 | 13 20 | ressbasss | ⊢ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ⊆ ( Base ‘ 𝑆 ) |
| 22 | 15 21 | eqsstrdi | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 23 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 24 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 25 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 26 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 27 | 1 5 7 23 24 25 26 | psr1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) = ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 28 | 25 | subrg1cl | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑇 ) |
| 29 | subrgsubg | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 30 | 24 | subg0cl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑇 ) |
| 31 | 29 30 | syl | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑇 ) |
| 32 | 28 31 | ifcld | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ 𝑇 ) |
| 33 | 32 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ 𝑇 ) |
| 34 | 2 | subrgbas | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 36 | 33 35 | eleqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 38 | 27 37 | fmpt3d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 39 | fvex | ⊢ ( Base ‘ 𝐻 ) ∈ V | |
| 40 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 41 | 40 | rabex | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 42 | 39 41 | elmap | ⊢ ( ( 1r ‘ 𝑆 ) ∈ ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ↔ ( 1r ‘ 𝑆 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 43 | 38 42 | sylibr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) ∈ ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 44 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 45 | 3 44 23 4 5 | psrbas | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 = ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 46 | 43 45 | eleqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
| 47 | 22 46 | jca | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝐵 ⊆ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝐵 ) ) |
| 48 | 20 26 | issubrg | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( ( 𝑆 ∈ Ring ∧ ( 𝑆 ↾s 𝐵 ) ∈ Ring ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝐵 ) ) ) |
| 49 | 8 19 47 48 | syl21anbrc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |