This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resspsr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| resspsr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| resspsr.u | ⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) | ||
| resspsr.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| resspsr.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | ||
| resspsr.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| Assertion | resspsrbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspsr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | resspsr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | resspsr.u | ⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) | |
| 4 | resspsr.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | resspsr.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | |
| 6 | resspsr.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 8 | 2 | subrgbas | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝜑 → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | 10 | subrgss | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 13 | 9 12 | eqsstrrd | ⊢ ( 𝜑 → ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 15 | mapss | ⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) | |
| 16 | 7 14 15 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 18 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → 𝐼 ∈ V ) | |
| 20 | 3 17 18 4 19 | psrbas | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → 𝐵 = ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 22 | 1 10 18 21 19 | psrbas | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ 𝑆 ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 23 | 16 20 22 | 3sstr4d | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 24 | reldmpsr | ⊢ Rel dom mPwSer | |
| 25 | 24 | ovprc1 | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝐻 ) = ∅ ) |
| 26 | 3 25 | eqtrid | ⊢ ( ¬ 𝐼 ∈ V → 𝑈 = ∅ ) |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → 𝑈 = ∅ ) |
| 28 | 27 | fveq2d | ⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → ( Base ‘ 𝑈 ) = ( Base ‘ ∅ ) ) |
| 29 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 30 | 28 4 29 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → 𝐵 = ∅ ) |
| 31 | 0ss | ⊢ ∅ ⊆ ( Base ‘ 𝑆 ) | |
| 32 | 30 31 | eqsstrdi | ⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 33 | 23 32 | pm2.61dan | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 34 | 5 21 | ressbas2 | ⊢ ( 𝐵 ⊆ ( Base ‘ 𝑆 ) → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |