This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resspsr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| resspsr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| resspsr.u | ⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) | ||
| resspsr.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| resspsr.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | ||
| resspsr.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| Assertion | resspsrmul | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspsr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | resspsr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | resspsr.u | ⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) | |
| 4 | resspsr.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | resspsr.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | |
| 6 | resspsr.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 8 | 7 | psrbaglefi | ⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 10 | subrgsubg | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 11 | 6 10 | syl | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 12 | subgsubm | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝑅 ) → 𝑇 ∈ ( SubMnd ‘ 𝑅 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → 𝑇 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑇 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 15 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 18 | 3 16 7 4 17 | psrelbas | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑋 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 20 | elrabi | ⊢ ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } → 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) | |
| 21 | ffvelcdm | ⊢ ( ( 𝑋 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ∧ 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ) | |
| 22 | 19 20 21 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ) |
| 23 | 2 | subrgbas | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 24 | 15 23 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 25 | 22 24 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑥 ) ∈ 𝑇 ) |
| 26 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 27 | 3 16 7 4 26 | psrelbas | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 29 | ssrab2 | ⊢ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ⊆ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 30 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) | |
| 31 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) | |
| 32 | eqid | ⊢ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } | |
| 33 | 7 32 | psrbagconcl | ⊢ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 34 | 30 31 33 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 35 | 29 34 | sselid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 36 | 28 35 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 37 | 36 24 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝑇 ) |
| 38 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 39 | 38 | subrgmcl | ⊢ ( ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ‘ 𝑥 ) ∈ 𝑇 ∧ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝑇 ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ∈ 𝑇 ) |
| 40 | 15 25 37 39 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ∈ 𝑇 ) |
| 41 | 40 | fmpttd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) : { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ⟶ 𝑇 ) |
| 42 | 9 14 41 2 | gsumsubm | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝐻 Σg ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 43 | 2 38 | ressmulr | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐻 ) ) |
| 44 | 6 43 | syl | ⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐻 ) ) |
| 45 | 44 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐻 ) ) |
| 46 | 45 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 47 | 46 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 48 | 47 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐻 Σg ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝐻 Σg ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 49 | 42 48 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝐻 Σg ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 50 | 49 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝐻 Σg ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 51 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 52 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 53 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 54 | 6 23 | syl | ⊢ ( 𝜑 → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 55 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 56 | 55 | subrgss | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 57 | 6 56 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 58 | 54 57 | eqsstrrd | ⊢ ( 𝜑 → ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 59 | mapss | ⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) | |
| 60 | 53 58 59 | sylancr | ⊢ ( 𝜑 → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 61 | 60 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 62 | reldmpsr | ⊢ Rel dom mPwSer | |
| 63 | 62 3 4 | elbasov | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝐻 ∈ V ) ) |
| 64 | 63 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ∈ V ∧ 𝐻 ∈ V ) ) |
| 65 | 64 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐼 ∈ V ) |
| 66 | 3 16 7 4 65 | psrbas | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐵 = ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 67 | 1 55 7 51 65 | psrbas | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( Base ‘ 𝑆 ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 68 | 61 66 67 | 3sstr4d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 69 | 68 17 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 70 | 68 26 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 71 | 1 51 38 52 7 69 70 | psrmulfval | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 72 | eqid | ⊢ ( .r ‘ 𝐻 ) = ( .r ‘ 𝐻 ) | |
| 73 | eqid | ⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) | |
| 74 | 3 4 72 73 7 17 26 | psrmulfval | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝐻 Σg ( 𝑥 ∈ { 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 75 | 50 71 74 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ) |
| 76 | 4 | fvexi | ⊢ 𝐵 ∈ V |
| 77 | 5 52 | ressmulr | ⊢ ( 𝐵 ∈ V → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑃 ) ) |
| 78 | 76 77 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑃 ) ) |
| 79 | 78 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) = ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) ) |
| 80 | 75 79 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( .r ‘ 𝑃 ) 𝑌 ) ) |