This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrascl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrascl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrascl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| psrascl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| psrascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑆 ) | ||
| psrascl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrascl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psrascl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | ||
| Assertion | psrascl | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrascl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrascl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | psrascl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | psrascl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 5 | psrascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑆 ) | |
| 6 | psrascl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 7 | psrascl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 8 | psrascl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | |
| 9 | 1 6 7 | psrsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 11 | 4 10 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 12 | 8 11 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 13 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 14 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) | |
| 15 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 16 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 17 | 5 13 14 15 16 | asclval | ⊢ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
| 18 | 12 17 | syl | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 20 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 21 | 1 6 7 | psrring | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 22 | 19 16 | ringidcl | ⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 24 | 1 15 4 19 20 2 8 23 | psrvsca | ⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = ( ( 𝐷 × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) ( 1r ‘ 𝑆 ) ) ) |
| 25 | fnconstg | ⊢ ( 𝑋 ∈ 𝐾 → ( 𝐷 × { 𝑋 } ) Fn 𝐷 ) | |
| 26 | 8 25 | syl | ⊢ ( 𝜑 → ( 𝐷 × { 𝑋 } ) Fn 𝐷 ) |
| 27 | 1 4 2 19 23 | psrelbas | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) : 𝐷 ⟶ 𝐾 ) |
| 28 | 27 | ffnd | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) Fn 𝐷 ) |
| 29 | ovexd | ⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) | |
| 30 | 2 29 | rabexd | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 31 | inidm | ⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 | |
| 32 | fvconst2g | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐷 × { 𝑋 } ) ‘ 𝑦 ) = 𝑋 ) | |
| 33 | 8 32 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐷 × { 𝑋 } ) ‘ 𝑦 ) = 𝑋 ) |
| 34 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 35 | 1 6 7 2 3 34 16 | psr1 | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 1r ‘ 𝑆 ) = ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) |
| 37 | 36 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 1r ‘ 𝑆 ) ‘ 𝑦 ) = ( ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ‘ 𝑦 ) ) |
| 38 | eqeq1 | ⊢ ( 𝑑 = 𝑦 → ( 𝑑 = ( 𝐼 × { 0 } ) ↔ 𝑦 = ( 𝐼 × { 0 } ) ) ) | |
| 39 | 38 | ifbid | ⊢ ( 𝑑 = 𝑦 → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) |
| 40 | eqid | ⊢ ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) = ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) | |
| 41 | fvex | ⊢ ( 1r ‘ 𝑅 ) ∈ V | |
| 42 | 3 | fvexi | ⊢ 0 ∈ V |
| 43 | 41 42 | ifex | ⊢ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ∈ V |
| 44 | 39 40 43 | fvmpt | ⊢ ( 𝑦 ∈ 𝐷 → ( ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ‘ 𝑦 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) |
| 45 | 44 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑑 ∈ 𝐷 ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ‘ 𝑦 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) |
| 46 | 37 45 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 1r ‘ 𝑆 ) ‘ 𝑦 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) |
| 47 | 26 28 30 30 31 33 46 | offval | ⊢ ( 𝜑 → ( ( 𝐷 × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) ( 1r ‘ 𝑆 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 48 | ovif2 | ⊢ ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) , ( 𝑋 ( .r ‘ 𝑅 ) 0 ) ) | |
| 49 | 4 20 34 7 8 | ringridmd | ⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 50 | 4 20 3 7 8 | ringrzd | ⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 51 | 49 50 | ifeq12d | ⊢ ( 𝜑 → if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) , ( 𝑋 ( .r ‘ 𝑅 ) 0 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) |
| 52 | 48 51 | eqtrid | ⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) |
| 53 | 52 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ( .r ‘ 𝑅 ) if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |
| 54 | 47 53 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐷 × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) ( 1r ‘ 𝑆 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |
| 55 | 18 24 54 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |