This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resspsr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| resspsr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| resspsr.u | ⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) | ||
| resspsr.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| resspsr.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | ||
| resspsr.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| Assertion | resspsradd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspsr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | resspsr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | resspsr.u | ⊢ 𝑈 = ( 𝐼 mPwSer 𝐻 ) | |
| 4 | resspsr.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | resspsr.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | |
| 6 | resspsr.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 9 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 10 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 11 | 3 4 7 8 9 10 | psradd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ∘f ( +g ‘ 𝐻 ) 𝑌 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 13 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 15 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 16 | 2 | subrgbas | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 17 | 6 16 | syl | ⊢ ( 𝜑 → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 19 | 18 | subrgss | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 20 | 6 19 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 21 | 17 20 | eqsstrrd | ⊢ ( 𝜑 → ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 22 | mapss | ⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝑅 ) ) → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) | |
| 23 | 15 21 22 | sylancr | ⊢ ( 𝜑 → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 25 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 26 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 27 | reldmpsr | ⊢ Rel dom mPwSer | |
| 28 | 27 3 4 | elbasov | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝐻 ∈ V ) ) |
| 29 | 28 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ∈ V ∧ 𝐻 ∈ V ) ) |
| 30 | 29 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐼 ∈ V ) |
| 31 | 3 25 26 4 30 | psrbas | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐵 = ( ( Base ‘ 𝐻 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 32 | 1 18 26 12 30 | psrbas | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( Base ‘ 𝑆 ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 33 | 24 31 32 | 3sstr4d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 34 | 33 9 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 35 | 33 10 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 36 | 1 12 13 14 34 35 | psradd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 ) = ( 𝑋 ∘f ( +g ‘ 𝑅 ) 𝑌 ) ) |
| 37 | 2 13 | ressplusg | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐻 ) ) |
| 38 | 6 37 | syl | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐻 ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐻 ) ) |
| 40 | 39 | ofeqd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ∘f ( +g ‘ 𝑅 ) = ∘f ( +g ‘ 𝐻 ) ) |
| 41 | 40 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ∘f ( +g ‘ 𝑅 ) 𝑌 ) = ( 𝑋 ∘f ( +g ‘ 𝐻 ) 𝑌 ) ) |
| 42 | 36 41 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 ) = ( 𝑋 ∘f ( +g ‘ 𝐻 ) 𝑌 ) ) |
| 43 | 4 | fvexi | ⊢ 𝐵 ∈ V |
| 44 | 5 14 | ressplusg | ⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑃 ) ) |
| 45 | 43 44 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑃 ) ) |
| 46 | 45 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑆 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |
| 47 | 11 42 46 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |