This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of the base ring induces a subring of power series. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgpsr.s | |- S = ( I mPwSer R ) |
|
| subrgpsr.h | |- H = ( R |`s T ) |
||
| subrgpsr.u | |- U = ( I mPwSer H ) |
||
| subrgpsr.b | |- B = ( Base ` U ) |
||
| Assertion | subrgpsr | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B e. ( SubRing ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgpsr.s | |- S = ( I mPwSer R ) |
|
| 2 | subrgpsr.h | |- H = ( R |`s T ) |
|
| 3 | subrgpsr.u | |- U = ( I mPwSer H ) |
|
| 4 | subrgpsr.b | |- B = ( Base ` U ) |
|
| 5 | simpl | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> I e. V ) |
|
| 6 | subrgrcl | |- ( T e. ( SubRing ` R ) -> R e. Ring ) |
|
| 7 | 6 | adantl | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> R e. Ring ) |
| 8 | 1 5 7 | psrring | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> S e. Ring ) |
| 9 | 2 | subrgring | |- ( T e. ( SubRing ` R ) -> H e. Ring ) |
| 10 | 9 | adantl | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> H e. Ring ) |
| 11 | 3 5 10 | psrring | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> U e. Ring ) |
| 12 | 4 | a1i | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B = ( Base ` U ) ) |
| 13 | eqid | |- ( S |`s B ) = ( S |`s B ) |
|
| 14 | simpr | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> T e. ( SubRing ` R ) ) |
|
| 15 | 1 2 3 4 13 14 | resspsrbas | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B = ( Base ` ( S |`s B ) ) ) |
| 16 | 1 2 3 4 13 14 | resspsradd | |- ( ( ( I e. V /\ T e. ( SubRing ` R ) ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` U ) y ) = ( x ( +g ` ( S |`s B ) ) y ) ) |
| 17 | 1 2 3 4 13 14 | resspsrmul | |- ( ( ( I e. V /\ T e. ( SubRing ` R ) ) /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` U ) y ) = ( x ( .r ` ( S |`s B ) ) y ) ) |
| 18 | 12 15 16 17 | ringpropd | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( U e. Ring <-> ( S |`s B ) e. Ring ) ) |
| 19 | 11 18 | mpbid | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( S |`s B ) e. Ring ) |
| 20 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 21 | 13 20 | ressbasss | |- ( Base ` ( S |`s B ) ) C_ ( Base ` S ) |
| 22 | 15 21 | eqsstrdi | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B C_ ( Base ` S ) ) |
| 23 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 24 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 25 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 26 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 27 | 1 5 7 23 24 25 26 | psr1 | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( 1r ` S ) = ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 28 | 25 | subrg1cl | |- ( T e. ( SubRing ` R ) -> ( 1r ` R ) e. T ) |
| 29 | subrgsubg | |- ( T e. ( SubRing ` R ) -> T e. ( SubGrp ` R ) ) |
|
| 30 | 24 | subg0cl | |- ( T e. ( SubGrp ` R ) -> ( 0g ` R ) e. T ) |
| 31 | 29 30 | syl | |- ( T e. ( SubRing ` R ) -> ( 0g ` R ) e. T ) |
| 32 | 28 31 | ifcld | |- ( T e. ( SubRing ` R ) -> if ( x = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. T ) |
| 33 | 32 | adantl | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> if ( x = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. T ) |
| 34 | 2 | subrgbas | |- ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) |
| 35 | 34 | adantl | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> T = ( Base ` H ) ) |
| 36 | 33 35 | eleqtrd | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> if ( x = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` H ) ) |
| 37 | 36 | adantr | |- ( ( ( I e. V /\ T e. ( SubRing ` R ) ) /\ x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> if ( x = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` H ) ) |
| 38 | 27 37 | fmpt3d | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( 1r ` S ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` H ) ) |
| 39 | fvex | |- ( Base ` H ) e. _V |
|
| 40 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 41 | 40 | rabex | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
| 42 | 39 41 | elmap | |- ( ( 1r ` S ) e. ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) <-> ( 1r ` S ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` H ) ) |
| 43 | 38 42 | sylibr | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( 1r ` S ) e. ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 44 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 45 | 3 44 23 4 5 | psrbas | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B = ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 46 | 43 45 | eleqtrrd | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( 1r ` S ) e. B ) |
| 47 | 22 46 | jca | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( B C_ ( Base ` S ) /\ ( 1r ` S ) e. B ) ) |
| 48 | 20 26 | issubrg | |- ( B e. ( SubRing ` S ) <-> ( ( S e. Ring /\ ( S |`s B ) e. Ring ) /\ ( B C_ ( Base ` S ) /\ ( 1r ` S ) e. B ) ) ) |
| 49 | 8 19 47 48 | syl21anbrc | |- ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B e. ( SubRing ` S ) ) |